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The general form of the Boltzmann collision operator is discussed. It is argued that this should be the
natural transition (super-) operator for a binary collision that is defined analogous to the ordinary transi-
tion operator in collision theory. Properties of the collision term are discussed, in particular pointing out
its general nonhermiticity and nondefiniteness as well as its behavior under parity, rotations, and time

reversal. In general, there is no /7 theorem.

1. INTRODUCTION

The object of this paper is to describe certain general
properties of the Boltzmann collision operator that are
especially relevant to problems involving internal
molecular states. Indeed, the fundamental question,
“what is the Boltzmann collision operator for such
problems” is not entirely obvious and an answer is given
here within what the authors consider to be the phi-
losophy of the Boltzmann equation. This philosophy is
used to “derive’ the collision operator but it must be
emphasized that this is not a mathematically rigorous
derivation. Rather it is a procedure which is (hopefully)
physically acceptable and leads to a reasonable form for
the collision operator. The properties of this collision
operator are then discussed and it is first shown that it
is well defined for a certain class of intermolecular
potentials, A presentation of the symmetry properties
of the collision operator due to parity and time reversal
is then given, along with its general lack of hermiticity
and positive definiteness.

Except for special molecular models,! the first
Boltzmann collision term that was introduced to
account for internal states was due to Wang Chang
and Uhlenbeck.? Essentially, their only change from the
Boltzmann equation for monatomic gases is the
introduction of collision cross sections appropriate for
changes in internal states and to replace the distribution
function f(r, p, ) by a set of distribution functions
fi(r, p, 1), one for each internal state. This Boltzmann
equation is sufficient for describing transport processes
involving internal energy changes but fails to have
enough flexibility to account for phenomena involving
degenerate internal states. To account for this, a
quantum Boltzmann equation was “derived” inde-
pendently by Waldmann® and by Snider* and has
subsequently been used to describe a variety of trans-
port and relaxation processes.” Even this is not suf-
ficiently general for the description of certain one
particle phenomena. In particular, the equation does
not conserve angular momentum and the fault lies in the
way the collision operator has been localized in position.
Recently, it has been shown® how a more general locali-
zation procedure can lead to consistency with all con-
servation laws, namely of mass, linear momentum,
angular momentum, and energy.

Another shortcoming of the Waldmann-Snider
collision term is that it is applicable only to those
(singlet) density matrices diagonal in internal energy.
This restriction has been stretched in the applications
of the Boltzmann equation since the Zeeman splitting is
standardly ignored in the collision operator but is fully
accounted for during the drift or free particle motion of
the molecules between collision. This is presumably a
very good approximation for small magnetic fields, but
not when it is necessary to have density matrices non-
diagonal in internal energy to account for high-fre-
quency effects in NMR? and to describe pressure
broadening of spectral lines.?

The Boltzmann collision operator discussed in this
paper is general enough to be used in all these cases but
its range of applicability is limited as is usual for any
Boltzmann equation. That is, it assumes that the
microscopic (collisional) motion is simply superimpos-
able on the macroscopic (hydrodynamic) motion® and
that only binary collisions are important. In particular,
this requires that the molecules are effectively outside
the range of interaction of their collision partner before
either one of these molecules collides with another.
Finally it is assumed that the past history of the mole-
cules in no way affects the probability that two mole-
cules collide. It is this combination of requirements that
the authors consider to be the philosophy of the Boltz-
mann equation.

The organization of the paper is as follows: After a
preliminary section on certain exact mathematical
relations, Sec. III implements the above ideas to
“derive” the Boltzmann collision operator. Section IV
then discusses those properties of the collision super-
operator which are connected with defining adjoints
and to the impossibility of a general H theorem. Also
discussed is one form of linearization of the collision
term. The parity, rotation, and time reversal properties
are then treated in Sec. V with Appendix A describing
two ways of time reversing an operator. Finally, a dis-
cussion (Sec. VI) of the properties of the Boltzmann
collision term is given in reference to applications to
kinetic effects for molecules with internal states.

II. EXACT RELATIONS

The quantum mechanical description of a molecule
requires that there is an underlying Hilbert space
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O=L:@PHins over the complex field. This space is a
tensor product of the translational Hilbert space, Ls, for
the positions of the molecule and the internal state space,
Oint- It is assumed in the following that a gaseous
system can be adequately described by a one-molecule
(singlet) density matrix p, that is, by a positive semi-
definite Hermitian operator of trace class. In general, an
operator 4:9—9 is of trace class (also called a nuclear
operator, 4 €M) if the positive operator | 4 | = (414)12
has a finite trace, namely

4 [h= TrIA1=§lxk<oo, (1)

where A, are the eigenvalues (necessarily discrete and
positive) of | 4 |. M is a Banach algebra with norm || ||,
and the class of states W (D) is a closed convex subset of
N with a fixed normalization. For later convenience the
normalization is taken to be

I 1= Trp=N, (2)

where V is the total number of molecules. It should be
mentioned that this explicitly excludes states that are
homogeneous in an unbounded region in space. Al-
though this is an annoying restriction and disallows
taking the thermodynamic limit, it is necessary in order
to keep the mathematics simple.

The Hamiltonian for a single molecule is a self-ad joint
(usually unbounded) operator 3 on &, and the cor-
responding one-particle quantum Liouville super-
operator®® £ is defined as

LA=3A—A3c=[3C, A].. (3)

If the molecules in a gas were free, that is, no interaction
occurs between the molecules, the singlet density matrix
p would satisfy the singlet quantum Liouville or von
Neumann equation

ifidp/dt=Lp. (4)
The formal solution of this equation is
o(t) = exp(—igt/f)p(0)
= exp(—13CL/%)p(0) exp(i3Ct/h), (5)
while exp(—#£¢/#%) is a norm preserving mapping
He@[li= 1l p(0) [ (6)
of W(9) to W(9).

If molecular interactions are present, Eq. (4) is not
satisfied. However, the N molecule density matrix, p®™
does satisfy an N-molecule von Neumann equation.
Here the N-molecule Hilbert space is% P =9H®
R+ @H; MM is the class of nuclear operators on
O to HW; and W (HP) is the convex set of positive
semidefinite Hermitian operators with normalization

6% ()= Trup® =N, )
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while the V-molecule Liouville equation is
iapN [31= LN pN) = JeWD ) pWge®)  (8)

This equation is always valid provided the system is
isolated. The Hamiltonian, 3% is assumed to be a sum
of one- and two-molecule terms, namely
e = X 50t ¥ Vs (9)
i i<
where 3C; is the one-molecule Hamiltonian and V; is a
bounded (to avoid further restriction on the states) two-
molecule potential energy operator.
Equations for the reduced density matrices

p®= Troymp™ /(N —1n) ! (10)

may be rigorously derived. The first two of this BBGKY
hierarchy are (p=p" and N —1~N—2=N)

ihdp; /0t = L£ip1+ Trs012012® (11)
and
1h9p12® /9t = L12Pp12 P+ Tr3(Viz+Vas) pr2a®, (12)
where
VA=V d— AV (13)
and
L0 =Ko+ Vio= £14 Lo+ V1o, (14)

The subscripts label molecules, it being assumed that
p™ and p™ are symmetric to particle interchange.
Equations (11) and (12) are of no use as they stand
since they are not a closed set of equations for either p
or p@. Consequently some approximate method must be
introduced in order to truncate the BBGKY hierarchy.
Such a truncation is described in the next section within
the philosophy of the Boltzmann equation.

III. THE BOLTZMANN COLLISION OPERATOR

Equation (11) can be interpreted as attributing the
time dependence of p; to a drift term £,p; and a collision
term TrsUjepe®. However this last term depends on p®
rather than p and is therefore not a closed equation for p.
What is here referred to as the philosophy of the
Boltzmann equation is to consider an approximation
which incorporates the assumptions: (i) only binary
collisions are used and these are assumed to occur on a
time scale that is short compared to both the time
between collisions 7; and the macroscopic relaxation
time 7, of p; and (ii) the pair density matrix factors
before a collision. These physical ideas can be formulated
in the following way:

(1) The value of p;2® that is inserted in Eq. (11) has
associated with it the binary interaction Vi, between
molecules 1 and 2 and thus the time dependence of pp®
that is inserted in this equation should be (within the
context of a binary collision approximation) independent
of the presence of any third molecule. That is, the p;s®
inserted in Eq. (11) should satisfy the pair Liouville
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equation

ih9p® /ol=LDp® (15)

rather than Eq. (12).

(2) Again, for the p@ that enters into the collision
term of Eq. (11), it is assumed that for times { long
before the two molecules interact

|| p2® (to) — p1.(t0) p2(t0) [lr——0.

ty—>—o0

(16)

Here, the time long before an interaction means a time
long compared to the duration of a collision but short
compared to the time between collisions. Thus from a
collision point of view, the limit f,—— % can be taken
while macroscopically f must be small. This separation
of time scales is to be implicitly assumed when the
formal limit f—— oo is taken. At such times it is
assumed that the molecules are sufficiently separated
(in particular no bound pair states) that the particles
are noninteracting and the product condition, Eq. (16),
is justified.

(3) Consistent with the idea of allowing only binary
collisions, the time dependence of p=p" that enters into
the initial condition, Eq. (16), of p® should be inde-
pendent of the presence of a third molecule. Thus Eq.
(4) should be used for the time evolution of p rather
than the first BBGKY equation, Eq. (11).

Equation (16) with p® satisfying Eq. (15) and p®®
satisfying Eq. (4), is just the asymptotic condition of
Jauch, Misra, and Gibson'? and leads to the definition
(Tr-lim is trace limit)

p® () =Qup® (1) p® () = Tr-lim exp(—iL1y/h)

to—>—o0

X exp(iKio/h) p® (1) p® (1) (17)

which defines a mapping® Q; from W®(HP) to
W (HP). This also maps pure pair states into pure
pair states. The point here is that the limit exists for
certain potentials V and it is this class of potentials for
which the Boltzmann collision operator can be defined.
In particular, if the Mgller wave operator exists in the
strong operator topology (st-lim),

Q= st-lim exp(—i3C®¢/%) exp(iKt/%), (18)
t>=—00
where K =3C,-+3Ce, then?
Q.4 =QAQ". (19)

Furthermore, even if @ does not exist in the usual sense,
Qr, can exist and there is' an isometry © of § such that
Eq. (19) is valid. In the remainder it is assumed that @
exists in the usual (strong operator topology) sense.

It is thus argued that the replacement in Eq. (11) of
p12? by 2501 ®p,® is the natural approximation to make
in accordance with the philosophy of the Boltzmann
equation. The resulting Boltzmann equation™ is closed
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in the sense that only singlet density matrices appear
1dpy/9t=L1p1+ Tr2312p1p2 (20)
while the superoperator

F=09, (21)

is the “transition superoperator.” This is the analog of
the transition operator {=VQ that appears in the usual
“Formal Theory of Scattering.” It is not to be con-
strued that the above procedure derives the Boltzmann
equation, but it is stated that all the operations appear-
ingin Eq. (20) are well defined for the class of (bounded)
intermolecular potentials for which @ exists. The
Boltzmann equation, Eq. (20), has a drift term £p and
a collision term TrJpeee which is the “natural”
collision superoperator for binary collisions together
with the Boltzmann property (i.e., factorization of p®
before a collision). Tt is the properties of this collision
superoperator which are discussed in the remainder of
the paper. To facilitate this discussion, it is convenient
to express J in several different forms.

Provided V is bounded, 3 can be extended to a
bounded operator from M@ to N® and from the defini-

tions, if 4 is any pair nuclear operator, 4 € N@,
JA =14 =0VQAQ =140 —QA 1. (22)

With the free (no Vi) pair-particle Green’s function

G(E)= st-lim (E—K-ie)™ (23)
>0+
and the Lippmann—Schwinger integral equation
Q=1+GVQ=1+G, (24)
the expression for 3 becomes
34 =1A— AT +1AFGT—GIALT. (25)

The E appearing in the Green’s function must be the
eigenvalue of K corresponding to the eigenfunction
(of K) on which @ acts. This restriction can be formu-
lated more precisely by means of the spectral theorem.
If Pg is the spectral measure of K, then

K = [EdPg, (26)
and
Gi=[G(E)tdPg
= st-lim [[(E—E'+i¢)"'dPptdPg
>0+
= lim (—X+ie)~1(2). (27)

>0+

The last form of Gf uses the superoperator X [see
Eq. (14) Jacting on £, Equation (25) can then be written
as

JA=tA— At —1A[G() - [G() 4t (28)

since

1Gt= (G ' = lim (X—ie) (1) =—G("). (29)
0+
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Here Gt and G(t) are to be interpreted as the super-
operator Green’s function, Eq. (27), acting on ¢
Insertion of the form of Jpp from Eq. (25) into Eq. (20)
is the same as Eq. (34) of Ref. 4, or in a special repre-
sentation, 34 of Eq. (22) is Eq. (16) of Ref. 6. If 4 is
diagonal in K and 34 is restricted to be diagonal in K
as well, then the Green’s functions can be combined in
the following way:

G AF+HA[G ()]
=[G4) I +1A[G(1) ]
= lim tA[(K+ie) ' (¢1) + (— K+1ie) (1) ]
0+

= —1A Yim [2ie/ (32+¢) ] (t1)

>0+

= —2mitds (%) ().

This leads to the usual form for the Boltzmann equa-
tion!s

i1i0p1/ 8t = L1p1+ Tral tp1pa— prat™+-2itp1pod (K) (1) ]
(30)

that has been used for treating the Senftleben effects,
NMR, and similar phenomena.®

An alternative representation of 34 is to follow the
formalism of the Lippmann—Schwinger equation but for
superoperators rather than for operators. Introducing
the spectral measure for energy differences (i.e.,
frequency) @, for X,

K= [wd®, (31)

or in terms of Pg,

K(A)=[wd®,(A)=[[(E—E")dPgAdPg. (32)
The Green’s function superoperator Go(w) is defined
analogously to Eq. (23) as

Go(w)= Eiri (w—X+1e) L. (33)

This is a generalization of G(4)=Gy(0)(4). Cor-
responding to Eq. (27), the (super-) superoperator Go
is defined by

Go(®) = [Go(w)@dP,= lim [[(w—w'+ie)dP., Ad®, (34)
0+

for any superoperator @. With these definitions, the
analog of the Lippmann—Schwinger integral equation is

Thus, J satisfies the equation
I=V+VGo(3) =V+VG(0), (36)

where, by standard resolvent manipulations, § is the
full two-particle (super-) superoperator Green’s func-
tion

8(@)=JG(w)@d®P,= lim [ (w—LP4ie)T1RIP,.  (37)
04
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Note that ®, is the spectral measure for & so that §
involves the properties of both £® and X.

The Green’s functions can be summarized as follows:
The operator G(E) of Eq. (23) is a spectral component
of the superoperator G, Eq. (27). Analogously, the
superoperator Go(w), Eq. (33), is a spectral component
of the (super-) superoperator Gy, Eq. (34). Further-
more, when w=0, these quantities are related by
Go(0) =G. These Green’s functions are free (pair)
particle propagators and similar relations can be ob-
tained for interacting (pair) particle propagators. For
the description of collisions, it is natural to use G[Go ]
which picks out the energy (energy difference) of the
associated component of the wave function (operator)
on which G(£)[Ge(3)] acts. In particular, acting on a
state vector ¥, G(f) gives

G(OY=JG(E)d(Prp), (38)

where d(Pgy) is the “component” of ¢ having energy E
and the G(E) which acts on id(Pr¢) is parameterized
by the energy E. An analogous interpretation is valid
for Go(3). The extra E[w] dependence of G[Go] reveals
that the superoperator G [ (super-) superoperator Go] is
more complex than its spectral component G{E)[Go(w) ]
As a result, certain properties are true for the para-
meterized operators G(E) and Go(w) that are not true
for G and G,. The same is true for the parameterized
operator {(E) and superoperator 3(w) which, for later
use are defined as

H(E)=V+VG(E)(E) (39)

and

3(w) =V+0G (0)F(w) =V+0VG(w)V.  (40)

As before for the Green’s functions, {(E) and 3(w) are
spectral components of

t=[{(E)dPg and J=[3(w)d®,,

respectively.
The superoperator 3(w) is the same as the limit,

(41)

lim 7 (w+1€),
0+
of Fano’s® m(w) collision operator. This can be seen by
comparing Eq. (40) of this section with Fano’s Eq. (46)
by associating the symbols V<L and XL, In
particular, if 4 is an eigenoperator of X, namely
KA =wyA, then
lim 7 (wo+1€) A =3 (wp) A =3A.

>0+

(42)
This is valid since wo is the “natural” frequency of 4,
but notice that

Iim m (w+1€) A =3(w) A#5A4

>0+

(43)

if w is not equal to wp. This important distinction arises
because J assigns to each X component of 4 its “natural”
frequency whereas J(w) has the frequency w already
specified.
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IV. BASIC PROPERTIES OF §J AND THE
LINEARIZATION OF THE BOLTZMANN
EQUATION

An immediate property of J that follows from Eq.
(22) is
(34)T=—3(4"). (44)

Using this and the fact that p is Hermitian, Eq. (20)
shows that dp/0¢ is also Hermitian and thus the Boltz-
mann equation preserves hermiticity. A more detailed
argument also shows that?

[3(w) 4] =—3(—w) (47). (45)

It is natural to define a scalar product of any two
operators 4 and B as

((B| A))= TtB'A. (46)

In particular, if 4 is nuclear, then B need be only
bounded for this product to be finite and in fact, the
bounded operators BE® form the space of linear
functionals’® on N. With the above scalar product
between the spaces B and N, the superoperator adjoint
@* of the superoperator @ can be defined by

(@ (B)] 4))=((B|a(4))). (47)

In particular the commutator superoperators X¥=1xXx,
£¥=¢, and V*¥=7T are self-adjoint. The Green’s
function superoperators Go(w) and §(w) have adjoints

Go(w)¥= lim (w—K—1ie)t (48)
>0+
and
G(w)*= lim (w—L£LB—4e)~1, (49)

>0+
These correspond to the opposite limit for time ({500 )
in Eq. (18) and govern the asymptotic behavior in the
infinite future rather than in the infinite past.
The adjoint 3{w)¥ of 3(w) is now determined by the
above equations to be [see Eq. (40)]
3(@)*=V+UVG () *0=0+3() *Go(w) ¥V (50)

and this bears no simple relation to 3(w). Following
Fano,'® it is useful to break up 3(w) into its Hermitian,
In(w), and anti-Hermitian, J3,(w), parts, i.e., 3(w)=
In(w)+13.(w). It also follows that 3,(w) is negative
semidefinite. This is accomplished by using the equali-
ties

Ja(w) = —5i[3(w) —3(w)*]
—210[G(w) —G§(w) TJU
= — 703 (w— L)V
=— %i['()go(w)ﬂ(w) —3(w) *go(w) *’O]
= —213(w) *[Go(w) —Go(w) ¥ 13 (w)
= —73(w) % (w—K)F{w), (51)

and then either the third or last form show that 3, (w)
is negative semidefinite.

I
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Although the superoperator 3,(w) is negative semi-
definite, an analogous result appears not to be true for
the anti-Hermitian part of 3, i.e., for 3,=—31(5—3%).
Essentially this is because 3, by Eq. (41), associates the
natural frequency of X to each component of the
operator on which it acts. If, however, 4 is an eigen-
function of X with eigenvalue w, then, by Eq. (51),

(4131 4)y=((4|5()[ 4))<0  (52)

is negative semidefinite. This is the superoperator
equivalent of the “on the energy shell” optical theorem
of scattering theory and can be thought of as the “on
the frequency shell” optical theorem. The negative
semidefiniteness (or lack of it) is crucial in any attempt
to prove an # theorem for Eq. (20). In particular, if p
commutes with JC, or at least sufficiently so, that 3 can
be approximated by 3(0), then 3.223,(0) is negative
semidefinite and one has the equation of Waldmann3
and Snider.* Here the allowed off diagonalities of p in
momentum are sufficient to account for slowly varying
position gradients while off-diagonalities in magnetic
quantum numbers can describe spin polarization effects.
However, these have negligible energy in comparison to
thermal energies, £7, so that it is reasonable to expect
that the approximation of replacing 3 by 3(0) is
justified. On the other hand, if high-frequency effects
are important so that p has terms with large energy
nondiagonalities, then it does not appear possible to
generally have an H theorem. Each term of p with a
definite frequency (energy off-diagonality) w hasits own
dissipative operator (3,(w)) but there are also colli-
sional coupling terms between frequency components
that do not appear to be sufficiently well bounded (at
least the authors have not been able to prove so) to
make the over-all quantity {{pp; | 3, | p1p2)) negative.
Hess® has generalized the Boltzmann equation but
has restricted his transition operators ¢ and ¢' to be
diagonal in energy together with appropriate § functions
in energy. Thus if A= | E){E’| shows only the energy
dependence of a pair operator 4, Hess’ collision super-
operator Jy is such that 3y 4 is also of the same form as
A, namely 5}{A= iE)(E 1 3HA 1 E,><E, ‘ That iS, Iy
preserves the form of the energy dependence of 4,
| E)E'|, and each specific operator of this kind is
collisionally uncoupled from an operator of the form
| E”Y(E"" | unless, of course, E”"=E and E""=FE'.
Following Tip’s® discussion, it is argued that Jy is the
long-time limit of the collision superoperator 3. Thus
transforming p to interaction representation, p(¢) =
exp(—1£t/%)5(1), the equation for 3, from Eq. (20), is

1H0p1/dt= Tra exp(i3t/h)3 exp(— 1Kt/ R)Bipe.  (53)

Since the high-frequency time dependence of p, due to
£, no longer appears in 3, it is reasonable to expect 5 to
be only slowly time dependent. The high-frequency
time dependence in Eq. (53) is then given entirely by
the exp(¢Xt/%) terms and for long times, these should
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phase average out to give a collision term 34 which com-
mutes with ¥. This projected part of 3 can be shown?
to be effectively the same as Jg, that is,

I u20s= [®,5(w) P.dw, (54)

where

Sr(A) =tsd — AtyT— 2mitg A5 (%) (1) (55)

and the t;’s vanish between states of different X energy.
The time needed to diagonalize 3 can be much longer
that the time 7, between collisions, in fact, many
multiples of this time. As time progresses, lower and
lower frequency components are diagonalized until
frequencies comparable to thermal energies are diag-
onalized. At this point it might be expected that J
should not be too sensitive to small energy differences
and can then be treated as diagonal in energy. Thus only
a crude diagonalization of J is required, not a precise one.
This has been indicated in Eq. (54), where an average
projection operator ®, has been used instead of a
precise selection of frequency based on the spectral
measure ®,. A possible relation between the two is

(56)

Co=Cur1208— Pu_12a

with some appropriate frequency width A<kT. At the
same time that 3 is evolving to 34, the high-frequency
terms (off diagonalities of p) are also decaying due to
collisions. There is then a competition as to whether 3
approaches Jq first or whether p becomes diagonal in &
first (i.e., to po—the zero frequency component of p).
The interest here must be in the long-lived high-
frequency components of p and the essence of the above
argument is that for sufficiently long times, the equa-
tion governing p has a negative semidefinite anti-
Hermitian part so a decay towards equilibrium is
expected at large times. However, for ‘“short” times
(i.e., as compared to the time to diagonalize 3) oscilla-
tions between different frequency components of p may
dominate.

The “long-time” collision superoperator 3, satisfies

Im{(4 | 3a| 4))= Im [ {(@u(4)[I(w)| Cu(A) ))de
=[{{@u(4)] 3:(w)| Bu(4) ))dw<0
(57)

which thus indicates a general decay to equilibrium.
However, this does not help in proving an H theorem
because ®, In(pips) = In(@uppe) and the convexity of
the function z Inz cannot be applied. In contrast, a
linearized collision superoperator can exploit the
negative definiteness of 34, and this is now discussed.
The first question to be considered in any lineariza-
tion of the Boltzmann equation is, linear with respect
to what reference density operator. Usually the answer
is based on an H theorem, but one is not available here
and hence some other argument must be used. It is
usually convenient to choose the reference density
operator to be collisionally invariant in one form or

B. C. SANCTUARY

another and an obvious choice would be to require
3a(pp) to vanish identically. This does not appear to be
possible. However, a particular part of this, namely the
anti-Hermitian part, 34.(pp) =0, is soluble and moreover
requires Inp to be a summational invariant. The proof
can be accomplished as follows: For any pair operator

A, the diagonal matrix element of 34, can be written as?
[see Egs. (46) and (35)]],

({4 [ 34 | 4))
= Im Trd"[ted— Aty'+ 2mwits A5(%) (1) ]

=—7 Tr(fzd—Ats) (14— A1) <0 (38)

where [;=6(K){ is a notation due to Iess.? It is now
convenient to resolve 4 with respect to the spectrum of
K and %, namely

A=[[dPg oAdPp=[[Ag dEdw (59)

with the spectral representation Ag, satisfying
KAg .= (E+w)dAg and XA g . =wAE .. Thediagonality
of Iz in X leads to a considerable simplification: the
contributions of 4g, to Eq. (58) are strictly additive
and no cross terms appear between different Ag,q..
Consequently, the remaining analysis can be restricted
to one spectral component, 4g .. It is possible to write
Ag ., 10 its polar decomposition,'® Ag =W | 4 |, where
W is a partial isometry (W'W=1) while |4 |=
(Apw'Ar.o)'" is positive, semidefinite, and Hermitian,
The relations KW =W, KW= (E+w)W, x| 4 | =0,
and K |A| =|A| K=E| A |follow immediately. The
contribution of Ag, to ({4 |34 | 4)) is then

({(Agw| B0t Ap))=—7Tr(td' | A | = [A [ t)?
Xt A= 14]t)<0,

where &/=WT,W. Equation (60) vanishes only if
/| A| =]4]4 In particular, | 4| has a spectral
decomposition,

(60)

| Al =2 an|n)n], (61)
where ¢,>0 are positive numbers and X | n)=E | n});
then, in this representation ¢4’ |A|=]414; has
diagonal elements

(Wan |t Wn)y—{n|t|n))e.=0.

If w0, then W | #)is on a different energy shell than is
'n) and unless ¢ is the same on both energy shells, Eq.
(62) implies that @, and hence | 4 | vanishes. Thus
({4 | 345 | A)) can be zero only for A’s that are diagonal
in K, 1i.e., X4 =0, In this case w=0 and with the further
specialization that A=pp=| 4 |, W is the identity and
Eq. (62) is identically satisfied. On the other hand, the
off-diagonal elements of {34 = A imply that

(62)

{m|t|n)(@Gn—an)=0 (63)

and a,=a, is generally required unless {(m|t]#n)
vanishes. Except for very special cases this occurs only if
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m and n have different values for some conserved
quantity. Thus 4 is a function of conserved pair
operators only. With the further condition that 4 be a
product of one-particle operators, 4 =pp, it then follows
that Inp must be a summational invariant.

The linearization of the Boltzmann equation can be
accomplished by considering a small fractional per-
turbation ¢ from the local equilibrium, p©®, where as
stated above, g=— Inp® is a summational invariant.
When the perturbation ¢ does not commute with p@®,
care must be exercised in the way in which the per-
turbation expansion is written. Three forms of writing
this have been discussed previously,”? namely p=
pO+3(p0p+¢p®), p=p@(1+¢) and the linearized
form of p= exp(—g+¢). The perturbation ¢ is Her-
mitian in the first and last case, but not generally in the
second. A fourth, symmetrized form is p=p®4
(p®) 12 (p®)12 and this is used in the subsequent
development. With this linearization, the linearized
Boltzmann equation is then

ifi(p®)712(3p® /31) (p©@) 72+ (ihod/0t) = L — iR,
(64)
and the linear collision superoperator ® is defined by
Rp=1(p®)~ 12 Tr,3
X L(60m®) 12(¢n) (50m®) ] (o) 2

An inner product for perturbation functions ¢ and ¥
obtained from the quadratic term in the expansion of
the entropy S= —% Trp Inp is*

(8, ¥) = Tru(9") (o) P2u(¥) (o).

Here # is the positive definite Hermitian superoperator
whose square is®

(65)

(66)

u?=1A/sinh(3A) (67)

and A is the “commutator of g with” superoperator;
AA=gA—Ag. The corresponding entropy production
o is to terms quadratic in ¢,

o =73k Tr In(pp)3(pp) = 3ik{(In(pp)| 3 | pp})
Sk Tratu (4 90)3L (60 @) 2 gt d2) (640ps0) 7]
=k Tx(o9) 1422(8) (60) 4R (9). (69)

Again, the entropy production is not necessarily positive
since 3 is not positive definite and oscillations can occur
between different frequency components of ¢. However,
at long times, it is reasonable to replace 3 by 3; and then
p©@p® commutes with 4. In this case, the entropy
production ¢ becomes

o =4t ({ (60 ®) Puts (-t ) (50ps®) 1
X34 | (s ) Yty (6-+) (60ps®)14)). (69)
Now B= (p©@ps®) Vs (p-+o) (p@po®) V4= Bt is Her-
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mitian and so
(B3| B))={{3"(B)| B))=(B|3%| B))*
= (BT |[3%(B)]"))=—((B|3*| B)).
(70)

The last equality follows from Eq. (44) and the fact
that B=B'. Thus the Hermitian part 34, of 34 does not
contribute to o, that is,

(B [3:+37% | B))={(B|3a| B))=0.
Consequently the entropy production simplifies to
o=—%k((B |3 | B))

=k{((p@) " (9) (@) [ Rua [ (p@) Vu () (0)14))
(72)

which is positive semidefinite and vanishes only if ¢ is a
summational invariant. Thus at long times, it is
anticipated that 3—3; and a decay to equilibrium will
occur,

(71)

V. SYMMETRY PROPERTIES OF 3

The behavior of 3, 3(w), and ® under rotations,
parity, and time reversal is now discussed. For this
purpose, the operators on & to  for parity, time
reversal, and a rotation are denoted by , 8, and . The
linear operators = and r are discussed first while the
more complicated antilinear operator 8 is treated after-
ward.

The superoperators IT and R corresponding to = and »
are defined by

MA=nAm, RA=rAr. (73)

Here use is made of the fact that %=1 while r is thought
of as an active rotation of the system. The symmetry of
3 under parity and rotations is founded upon the sym-
metry properties of the Hamiltonians, namely,

Ix(H, E)=n3¢(H, E)Yr=3C(H, — E), (74a)
Ryc(H, E) =r3¢(H, E)r'=3¢(R"1-H, R!-E), (74b)
and

OV=RV=V. (74¢)

Allowance has been made for the possible dependence of
3¢ on external magnetic H and electric E fields, while V
is assumed to be independent of such quantities. Under
a rotation R, any vector operator is rotated by the 3X3
matrix R (second rank tensor in position space). In
consequence, any vector parameterizing the Hamiltonian
is effectively rotated in the opposite direction [for
example, R™1-H as in Eq. (74b)]. The symmetry con-
ditions of § are obtained from its definition and the
linearity of R and II, namely

5(H, E)IT=5(H, —E) (75a)
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and

R3(H, E)R'=3(R-H,R - E). (75b)

Exactly the same relations are valid for 3(w) while for
the linearized collision superoperator ®, the symmetry
properties of p© must also be taken into account. If the
steam velocity v, is the only vectorial parameter in p©,
then this is transformed in the same way that the
electric field vector E is, that is,

OR(H, E, v)[I=®R(H, —E, —v;)  (76a)

and

RR(H, E, v)R'=®(R--H, R"-E, R~ v,). (76b)

These symmetry conditions are useful in simplifying the
calculation of the matrix elements of 3, 3(w), and ® as
well as governing certain symmetry properties of, for
example, the transport coefficients.

The time reversal of operators is discussed in Ap-
pendix A and there two different superoperators 0 and
O, are defined, 64 =046"" and 6.4 = (046~")T. Both
can be considered as natural time reversal superopera-
tors in one form or another and the object of the
subsequent discussion is to obtain the commutation rules
of 3, 3(w), and & with each of © and ©,. The symmetry
properties for the matrix elements of 3, 3(w), and ®
that result from these transformations are also given.

The time reversal properties of the Hamiltonians 3¢
and V are

03c(H,E)=06,¢(H, E)=3c(—H, E) (77a)
and

ov=e=V. (77b)

No distinction arises here between © and 6, since the
Hamiltonian is Hermitian. From its definition, Eq. (39),
t(E,H, E) can be expressed as

t(E, H, E) =V+ st-lim V[E—3%® (H, E)+ie]'V
>0+

(78)

which transforms under 0 to
Ot(E,H, E)=0/(E, H, E)o!
=V+ st-lim V[E—3®(—H, E) —ie 'V

>0+
=(=(E, —H,E)=t(E, —H, E)1. (79)
This corresponds to the opposite time limit, namely
strong operator limit as =+ in Eq. (17). In con-
trast, the other time reversal operator 9, gives

6:(E,H, E)=[6/(E, H, E) |’

== (E) _H7 E)T'_—t(E’ _Hy E) (80)
and {(E,H, E) is invariant under this time reversal
superoperator except for the replacement of H by
—H. The time reversal of the transition operator
t=ft(E,H, E)dPg u x is not as simple as its spectral
component {(E,H, E). The following relations are
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found:
Ot(H, E)=06[{(E,H, E)dPpux
=[19(E, —H, E)dPg,_ur=¢"(—H, E)

(81)
and
otH, E)y=[6i(H, E)]'=i(—H, E)*

zfdPE,_H,Et(E, —-H, E) (82)

These symmetry properties are closely related to the
i(E,H, E) symmetries, Egs. (79) and (80), but
0.t(H, E) cannot be identified with {(—H, E) as was
done for 6.4(E, H, E) in Eq. (80), because the projec-
tion operator Pg acts on the left rather than on the
right side of t(E, —H, E). In particular, if { is evaluated
on the energy shell, ie., (x|t|y) with K(H, E)x=
E(H, E)x and K(H, E)¢y=E(H, E)y having the same
energy E, then t(H, E) is effectively t(E(H, E), H, E)
and likewise 6.(H, E) reduces to t(E(—H, E), —H, E).
Thus on-the-energy-shell, t satisfies [see Eq. (A6) ]

x| ((H, E) )=y | {(—H, E)| 0x) (83)

and the transition amplitude from y to x is the same as
from 6x to 6. In contrast, the 6/(H, E) symmetry is

(x| t(H, E)| )= Ox | {7 (—H, E)|[ 6p)*. (84)

This is equivalent to Eq. (83) but is not expressed in as
nice a form. Thus O, appears to be the natural trans-
formation to use for on-the-energy-shell i matrix elements

Now it is seen that © commutes with U but changes
X(H, E) to X(—H, E) ie.,

60=76, OX(H E)y=X(—H,E)0. (85)
As a consequence, 3(w) transforms as [see Eq. (40)]
03(w,H, E)=3"(w, —H, E)0, (86)
where
I w) =V+ lim UV (w— LD —ie) 0 (87)

>0+

corresponds to the opposite time limit (;F—>+ ) in
Eq. (16). For ©,, the above relations are changed to
their negatives, namely

9;0= —’090, GLK(H) E) = _JC(_H’ E) 95
and in particular

05(w, H, E) = —3 (—w, —H, E)O,.  (88)

Equation (45) has been used to obtain this last result.
The commutation properties of 3 with © and ©, follow
from Eq. (41),

03(H, E)=0[3(w,H, E)d®, 5 x
=f5(_) (w, —H, E)d(Pw,_H,E

=39(—H, E)6 (89)

and

6J3(H, E)=—-39(—H, E)6.. (90)
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These last two equations can also be derived using Eq.
(22) and the corresponding equation for 3¢ in terms of
() and Q, together with the transformation equations
(81) and (82). The similarity between Eq. (79) for
Oit(E) =8t(E)6' and Eq. (86) for 63(w)©7!, and
between Eq. (81) for ©t=g/6""' and Eq. (89) for
030! are striking. This is due to the antilinearity of 8
and O, whereas the O, relations are quite different. By
analogy with the transition operator case, it might be
expected that on the frequency shell, 3 =3% and this is
easily shown to be the case. In particular 3 satisfies the
relations

03,(H, E)o =53, (—H, E)=3,%—-H, E) (91)
and thus the matrix elements of 34 obey the symmetry
({4 3:(H, E)| B))={({4| 673(—H, E)*6 | B))

={(3,(—H, E)¥0B | 64))

={(6B|3.(—H, E)| 04)) (92)

which is exactly analogous to Eq. (83) for the on-the-
energy-shell matrix elements of /. Equation (92) is in the
form of the Onsager reciprocal relations which suggests
that O is the appropriate time reversal superoperator for
kinetic theory. In contrast, the relation

({(413(H,E) | BY)=—((0.4 | 37(~H, E) | 6.B))
(93)

which follows from Eq. (90), is analogous, in part, to
Eq. (84) for the transition operator but is not in the
form of the Onsager reciprocal relations. It is to be noted
that Eq. (92) is valid for 3; only and is not applicable
in the short time regime of the Boltzmann equation
when transient couplings between different frequency
components of pp are important.

Similar relations are also valid for the linearized
collision superoperator ®, Eq. (65). Again, assuming the
stream velocity vo to be the only new parameter in p
subject to time reversal considerations, the commutation
rules

OR(H, E, vo)=—QR(—H,E, —v;)0 (94)
and

0.R(H,E, vo)=—R(—H, E, —v;)6, (95)

are immediately obtained. Upon diagonalization with
respect to frequency [use 3; instead of 3 in Eq. (65) ],
these relations are simplified to

G(Rd(H, E, Vo) =(Rd(—H, E, — Vo) *9 (96)
and

ev(Rd(H? E; V()) =(Rd(_HJ E; - Vo):‘:ec (97)

which are the same for both time reversal superoperators.
However, the content of Egs. (96) and (97) are differ-
ent even though they have the same form because O is
antilinear while O, is linear. In particular, for 6, the
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matrix elements of ®q are related by
<<A l (Rd(H) E, Vo)‘ B>>
=((6B | ®s(—H, E, —vo)|64)) (98)

which are in Onsager form whereas using O, they are
not. Thus it is again suggested that O is the appropriate
time reversal superoperator in kinetic theory.

VI. DISCUSSION

A Boltzmann equation appropriate for describing a
gas of molecules with internal states has been rational-
ized on the basis of assuming (i) that the pair density
matrix is a product of singlet density matrices before a
binary collision and (ii) that only binary collisions
occuring on a time scale short compared to the time
between collisions are important. This results in a binary
collision transition superoperator 3 which is formally
similar to the ordinary collision theory transition
operator {. Several properties of 3 have been discussed
and a correspondence made with Fano’s pressure
broadening collision (Liouville space) operator. In
particular, it does not appear possible to prove that the
anti-Hermitian part of J be negative definite which
would correspond to a decay to equilibrium. It is argued
that this is not an unreasonable result in that transient
effects can occur which are not of decay type, and, in
fact, may lead to a decrease in entropy while certain
coherences are being built up in the gas. However it is
expected that these effects are of a transient nature
and that after a sufficient period of time, a phase
randomization of the collisional coupling between
different frequency components of the density matrix
p will occur. From then on, J is replaced by its phase
randomized (diagonal) transition superoperator, 3Jg,
and decay to equilibrium occurs. If 7,4 is the time scale
on which the collision superoperator diagonalizes,
while 74, 74, 7., and 7, are respectively the time scales of
diagonalization of p, free flight time, collision time and
of complete relaxation (hydrodynamic time scale), then
the detailed time dependence of the gas is governed by
the relative magnitudes of these time scales. It is in-
herent in the ahove treatment that 7. <r; and thisis a
requirement on the smallness of the density # (7;« 1/%)
and the short-ranged nature of the intermolecular
potential. The time scale 74 is, in effect, 1/w where w is
the energy off-diagonality of p. It is the relative sizes of
75 and 7 and how these vary with density and field
{magnetic or electric) that is responsible for the
Senftleben and Senftleben-Beenakker effects.? This same
comparison of time scales is also responsible for the spin—
spin relaxation (7%) processes® in NMR and, more
recently, for the high-frequency-high-density steps’ in
the spin-lattice relaxation time 7. For the ordinary
NMR relaxation, it was assumed that {; is used for ¢,
not because of any decoupling of energy components,
but because of the insensitivity of  to the small Zeeman
energies involved. In fact, the transition operator { is
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assumed independent of magnetic field H and it is then
a property of isotropy that rotational invariance
decouples the frequency components. This might be
referred to as an accidental diagonalization of 3. The
same arguments are valid for the spherical approxima-
tion® of the collision integrals in the Senftleben-
Beenakker effects.

In contrast, the collisional coupling of different
frequency components play a very important role in the
high-frequency NMR steps and, more explicitly, in
pressure broadening of microwave absorption.? It is
particularly instructive to notice the comparable sizes
of diagonal and off-diagonal frequency components of
3 that are needed to explain the experimental results in
this last case. Since 7.4 arises because of a phase random-
ization of 3, it is expected that r.4~1/w where w is again
proportional to the energy separation of internal states.
Thus 7.4~~274 and so the effect of collisional frequency
coupling and of phase coherence in the density matrix
are expected to be competitive—and this is what the
above treatments are describing. That 3 could be
almost 34 in many situations involving internal states
might be due to the relative smallness of the anisotropic
part of the intermolecular potential coupled with the
selection rules of this part of the potential.

Finally, Tip®* gives a Boltzmann equation which,
in the present terminology, has J replaced by 3(0). The
present authors cannot agree with this equation and
disagree with Tip’s derivation where he has replaced
o1(t—s)pa(t—s) by p(t)p:(f) for the stationary or
almost stationary case. This replacement ignores the
free particle evolution in time over the time inter-
val s and this is necessary, for example, to compen-
sate for the center of mass motion arising due to
£® during the time interval s as well as other com-
pensating effects,”® and in particular here, in order
to account for the high-frequency coherence during
the time interval s. If these effects are taken into
account by replacing p; ({—s) i (1—s) by exp(iXs/fi) X
p1($) p2 (1), then Tip’s derivation gives 3 instead of 3(0)
which then agrees with Eq. (19) of this paper. More-
over, the authors claim that this is the generalization to
quantum mechanics of the work of Silin® (Silin treats
only weakly coupled gases) because his collision integral
is explicitly frequency dependent corresponding to the
frequency component of the distribution function that
is being considered.

APPENDIX A: TIME REVERSAL OF OPERATORS

The time reversal operator 8 acting from state vector
space¥! O to P is antilinear. That means, for any pair of
elements ¢y, ¥» of O, the equation

8 (1t o) = a1 0+ a0y

is valid. Furthermore, the square of6 is either 4=1 where
1 is the identity operator and the = distinguishes
between Bose-Einstein (4) and Fermi-Dirac (—)

(A1)
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particles.® This means that

6-'=+¢ BE/FD. (A2)

One of the difficulties in working formally with 6 is that
does not have an adjoint as usually defined.® This is
because 4 is not linear and is reflected in the fact that

Oy | 0x)=(x | ). (A3)

For a given linear operator 4, there are two seemingly
natural ways of defining the time reversed operator
A 7. One way is by means of the superoperator 6 defined
as

0A4=046" (A4)

which is how a similarity transformation is usually
defined. However, because of the antilinearity of 6, it is
natural to define the time reversed operator by means
of the superoperator 6, defined as™

0, A= (0461 =0AT0"1=6"14"4. (A3)

This is natural in the sense that the matrix element
relationship

| Alm)y=0Am|0n)={0A070m | on)

={m | (0A67") | On) (A6)

is analogous to Eq. (A3). In the kinetic theory of gases,
© appears to be more closely related to the Onsager
reciprocal relations than does O see Sec. V. The
properties of both superoperators are described in this
Appendix.

First of all, as operators on §, 64, and 6.4 are linear
(as distinct from antilinear) for a linear operator 4.
This follows for ©4 by the sequence of equalities

046! (Cltl/rJr 6211/2) =04 (cl*a'lnh-l— 62*0_11l/2)
=0 (Cl*A 0_1¢1+62*A0-1\l/2)
=610A0—]1P1+620A0—III/2 (A7)
and then 8,4 =[04]" is linear since it is the adjoint of a
linear operator. The equality (461)T=604%"" of Eq.
(AS) is proven by
(046 | m)y= A6 'n | m)
={"'m | AG'n)={(A"6"m | 6 'n)
=(n |64 | m) (A8)
while the last equality of Eq. (A5), namely, 0470~!=
6-1479, is an immediate consequence of Eq. (A2).

The properties of the superoperators 6 and 6., that is,
how © and O, act on an operator 4 in contrast to how
04 and 6.4 act on $—as was discussed in the previous
paragraph—are now discussed. First, acting on a

product of operators, © preserves order while 6. changes

order, that is,
O0(AB)=6(4)6(B); ©.(4B)=0.(B)6.(4).

(A9)
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Second, © is antilinear while O, is linear, that is,

(5] (01A1+ d2A2) =0 (01A1+ a242)07!

= ;%0 4,07+ ax*0 4,6~
=a;*0(41)+a:*0(4:) (A10)
while
0.(a A1+ a:ds) =[0(mdi+ad;) |
=a10.(41) +@0.(4:). (Al1)

Furthermore, © and ©, are, respectively, their own
inverses while in the Hilbert-Schmidt space of operators
with the inner product of Eq. (46), © is antiunitary
while ©, is unitary, thus

0, 1=06,* =0, (A12)
and

6-1=0 (A13)

while an antiadjoint?® 6% can be defined for © which
satisfies ©F=0-1=0, These inverses are proven by the
set of equalities

024=0,(046") =0(0A%) 9~

=RA(0)?2:=024=(+1)A(£1)=4 (Al4)

while 0, is an isometry, 6,70,=1, follows from®
(6.4 6.B))

= Ti[0,4]'0.B

= Tr40~9B'6'= TroABi6!

=3 (n|0ABW ! [ n)=3 (ABW0'n |6 'n)

=3 (AB'm|n)=3 (n| BA" | n)

= TrA'B= ({4 | BY), (A15)

where, in the proof {|#)} is a complete orthonormal
system for 9. Finally, the antiadjoint property of © is
reflected by the equations®

((64 | ©BY)= Tr(646-)10B6
= TroA6-19B6= TroA*Bo!

= TrB'A=((B| 4)). (A16)

This equation is very similar to Eq. (A3) and © then
appears as the time reversal superoperator which most
closely resembles the “ordinary’” time reversal operator
8. © has, in fact, exactly the same properties as does 8
except for the lack of any distinction between Bose-
Einstein and Fermi-Dirac statistics, a property shared
by ©.. This lack of distinction is reasonable since ©
(and ©.) act on operators in contrast to acting on state
vectors and symmetry properties (BE vs FD) are for
the latter rather than the former.

Last, for selfadjoint operators, 8,4 =64 and no
difference between © and O, arises.
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% There can be a tendency to interpret 6 as a transformation
from H to its dual \‘é* (transformation from ket to bra states
in Dirac terminology) and from §* to §). Such an interpretation
merely complicates the fundamental concepts rather than sim-
plifying them. Here very explicitly, 8 is an antilinear transforma-
tion from §3 to §3.

* See, e.g., E. P. Wigner, Group Theory and Its Applications
to the Quantum Mechanics of Atomic Spectra (Academic, New
York, 1959).

¥ An adjoint is defined, see also Eq. (47), by the equation
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(A'n|m)= (n| Am), and this is not possible for 8 because of its
antilinearity. In contrast, an “antiadjoint” 6% can be defined to
satisfy (u|8m)= (m|6Tn). With Eq. (A3), the antiadjoint
can be identified with 67!, that is 6T=6"1= 10, see also Eqgs.
(A12) and (A13).

% See, e.g., R. F. Streater and A. S. Wightman, PCT, Spin
and Statistics, and Al That (Benjamin, New York, 1964), p. 17,
For Hermitian operators there is no distinction between © and
O,.

% Note that Tr@ABg1=TraB=trABt so the cyclic in-
variance of the trace is not valid for antilinear operators.
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ESR Studies of Cu, Ag, and Au Atoms Isolated in Rare-Gas Matrices
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Electron spin resonance spectra were observed on Cu, Ag, and Au atoms isolated in Ne, Ar, Kr, and
Xe matrices at ~4°K. The hyperfine coupling constants and the g values were determined and examined
for the matrix effect. With xenon matrices a superhyperfine structure with magnetic xenon nuclei was
partially resolved, and by means of computer simulation, it was shown that these atoms are substitutionally
incorporated within the Xe lattice. Also an evidence for atom-vacancy pairing was observed for Cu in Ne

matrix.

INTRODUCTION

Visible and ultraviolet spectra of various atoms
trapped and isolated in rare-gas matrices have been
reported by several authors.! The spectra are usually
shifted from the gas-phase positions, exhibit line
broadening, and possess multiplet structures not shown
by their gaseous counterparts. The multiplet feature
has been asserted to arise from multiple trapping sites
and/or removal of the degeneracies among the other-
wise degenerate orbitals of the atoms by the local
crystal field. Foner ef al. investigated the ESR spectra
of H atoms,? and alkali atoms® isolated in rare-gas
matrices, and showed unequivocally the existence of
multiple trapping sites for these atoms.

We report here the results of our ESR studies of
Cu, Ag, and Au atoms isolated in a series of rare-
gas matrices.* Except for the case of neon matrices,
we saw no evidence of multiple trapping sites for
these atoms. This observation is not compatible with
the recently reported analyses of the ultraviolet spectra
of Cu, Ag, and Au atoms similarly isolated in rare-gas
matrices.!5® ESR spectra of these atoms have been
observed by Zhitnikov ef al™ who succeeded in
isolating the atomic species in various molecular mat-
rices at liquid-nitrogen temperature. The spectra ob-
served by these authors, using paraffin as a matrix,
are very close to those expected on the basis of the
hyperfine coupling constants known from the atomic
beam experiments.!'? The present series of experi-
ments was undertaken, however, in order to better
understand the interactions between the rare-gas mat-
rices and the atomic species trapped therein.

EXPERIMENTAL

The design of the liquid helium Dewar and ESR
spectrometer system which allows the trapping of high
temperature species and the measurement of their
ESR spectra has been described previously.® The
matrix is formed upon the flat surface of a spatula-
shaped sapphire rod which can be rotated about its
long axis and moved vertically in and out of the ESR
cavity. The metals were vaporized from a resistively
heated tantalum cell. The temperature of the cell was
~1400°C, ~1100°C, and ~1500°C for Cu, Ag, and
Au, respectively. All the spectra were taken with the
matrix maintained at ~4°K. The ESR spectrometer
is an X-band spectrometer, and the microwave fre-
quency locked to the loaded cavity was 9.430 GHz.

SPECTRA AND ANALYSES

The ground state electronic configurations of Cu,
Ag, and Au atoms are 3d"Y4s!, 4d4'°5s', and 5d"6s!,
respectively. Rare gases, Ne, Ar, Kr, and Xe, are all
known to crystallize in a face-centered cubic lattice."*
Let us assume that the trapping sites for these atoms
retain the octahedral symmetry of the host lattice.
The resonance spectra of these atoms should then be
describable by a spin Hamiltonian (1) with isotropic
g and A tensors

30=gBH-S+AI-S. (1)

Here S=%, and I is the nuclear spin of the atoms
concerned. The g value is expected to be very close to
the free spin value, 2.0023, and the hyperfine coupling
constant A is expected to be extremely large mani-
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