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INTRODUCTION

In pulsed NMR the use of pure pulses corresponding to S-functions are found
to be preferable since they simply prodiuce rotations of the various
polarizations. Whilst in principle such ideal infinitely-short pulses should
cover all frequencies, in practice both the pulse duraticn and frequency range
are finite. A theory for selectively pulsed NMR (1,2) has recently bheen
developed (7) to cover those cases in which not all spectral frequencies are
simuiltaneously pulsed. Selective irradiation is particularly pertinent to NQR
where the large quadrupolar coupling constant ensure that it is rarely possible
to pulse all frequencies simultaneocusly.

In this paper the NMR theory of selective excitations is used to describe
pulsed NQR experiments involving single spins of arbitrary magnitude; the
effects of rf pulses will be completely predicted for any initial condition. In
particular, it is shown that pure NQR freguencies corresponding to transitions
between isolated pairs of levels, as in case of I = 3/2 with 3/2 <--> 1/2, or,
-3/2 <==> -1/2, are not affected by the quadrupole and that such selective
pulses correspond to pura pulses. In contrast, for integer spin there will
always be a common level shared by two spectral frequencies (e.g. as in I = 1
case with -1 <——> 0 : 0 <—=> 1). This gives rise to effects from both the rf
field and the quadrupole which are no longer purely rotations.

In this paper the advantages of a multiplet formulation of selective pulse
theory are outlined starting with the NMR case. The theory is extended to

consider applications in NQR.

SELECTIVE EXCITATION IN NMR

The miltipole formulation of NMR (ref.3-7) writes the spin density operator
(ref.8) in terms of a multiéole operator basis which is irreducible under the
rotation group. Physically k describes the multipole character and the
spherical component, g = A m defines the multiquantum coherences (ref.6). The
polarizations are simply the expectation value of the corxresponding multipole
operator, viz:

k. . _ ok _ x (1
sgte) = <Yonr> frr{clct)"jq(z)} .
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Such knouledge'of thé nuzleaxr polarizations completely describes the spin state.
The spin density operatcse cI(t) can be written in the multipole basis as,

' 2T +k :
- k kg 1 .
epvz =z ogte) U} (2)
k=1 g=-k }

o (t) =
- 2I+1

. _ + .
where the adjoj_.__nt pzope::_ty,"j: = ")j'kq' has been used. The time evolution is
determined by the standard form, '

acI(t) .
E——— = [N, o ()] ' (3)

at . . .
where  is the Hamiltonian for the system.

In solving {3), it will be seen that exponentiation of and use of unitary
operators of form U = exp( —-iMt), as in (ref.13), has been completely avoided.
Instead, cne commutator is calculated and a set of coupled first order
differential equations obtained,

==§§:2 (4)

where ¢ is a vector spanaing indices k and q, and I has a matrix representation
of the form

(i)kq'k;q. = tr{"iqut)l.“;l- ) (s)

It is clear.that the concepts and representations implicit in (4) and (5) are
derived in part from earlier.ideas (réf.9) dealing with Licuville opérators; It
is necessary to specify the initial conditions ¢$(0) to obtain a soluticn of (4)-
Tha mﬁltipole fheory ©of selective excifation focusses on the multiplet subset
of levels irradiated by the pulse. In conventicnal NMR only single guantum g =
Ari = #1 coherences are cbserved- for NOR these frequencies are the strongest
£atures. For q = *1 paxrs of adjacent levels may be used to define a mu1t1plet
s3in of 1/2; the formalism has been  discussed elsewhere (ref. 5). When two
tranSLtions that share a cormon level are simultaneously excited within a three
level subuan;fold, the multzplet spin is not 1/2; ' a multiplet spin of 1 now
applies with the level construction illustrated in Fig. 1. Further generaliza-
" tion of the multiplet cbncént to mnltiépantum-transiéions is straight forward.
Such an I multiplet spin will act on a (2T +1) subspace and allow one to
write ;ormal equatzons {ref.?) analagous *to (1) (5)- The multlplet spin density

_operatcr 'is then

1 ZIH - +p o o
op M) = s——{=. + z " = ¢q(IHH)3IM(m} o . (8

™ M M p=1 qi-p

‘which is particularly simple for I = 1/2, or 1. For a Hamiltonian

M
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Fig.1. Selective excitation of (a) one transition defining an IM=H, and {b) two
single quantum transitions defining an IM=1’ multiplet spine.

- - A8 32 - -
H= YR I+ ey {31z 1(I+1)}~ﬁ1xm1cos(mt 9) + AT w, sin(ut=¢) (7)

where ¢ is the phase angle and w, = YHO, it is found that for the single quantum

selective excitation, the rf amplitude is replaced (ref.3,10) by

w1,eff= Y (I+m) (I-m+1) wy ’ (8)

and ﬁhe quadrupole term 5 is replaced by'aeff(ref.3). For IM= 1/2, §ef6= 0 and
for I.= 1 the effective term is

M
2%
3 =——==__ 9
Qegr = T(2I-D ()
It is significant that for multiplet spins I, = 1/2, regardless of the magnitude

of §.Ithe effect of an rf pulse is solely determined by the rf Zeeman term. The
result is a pure rotation (ref.6,7),

W
~1
5 [taB) 1 = Y,

1
& qq.(-(¢-a):5:(¢-a))¢q.(HM)(O) (10)

The angles a and B are given for both on and off-resonance conditions (ref.6);

in the present context, w, is replaced by w It is seen that (8) is the

1

1,eff”
origin of the /3w1, and 2w

1 factors found in selective processes (ref.10,11);

these may be interpreted physically as increases in v &nd the effective rf power
arising from localization of the rf to the IH<I' (21H+1) subspace, rather than
being spread over (2I+1) levels as in the non-selective case. In {10) the
Wigner rotation matrices are defined with use of the convention of Edmonds

-ig w t k

e o & .

="1, the combination of

M
both rf and quadrupole interactions must be considered. This has been solved by

Y L~
(ref.12) and ¢é implies the rotating frame defined by ?: =
For a selective pulse acting on a multiplet spin I
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perturbation theory (ref.3) in the limits luw, . 1> ;a'eff;. Since the effective
rf amplitude is larger than wy whilst the effective quadrupole coupling constant
is less than §, clearly the limit !w '>!J: is particularly easily satisfied by
selective pulses. The result is,

- i) e : - D' ®? - i
¢§(1Mm g DL (aws.-0,00exp{in_ 3t} ug ) D o (000 ¢)¢§_(1Hm[01(11)

ptaqgr W :
where
= Fren2ro
Rore= Jaw +twl, eff : (12)
cos 6 = Aw/Q (13)

and where the effective quadrupole occurring in the development matrices M (t)
is given ky, :
2,2
< 1 1280 /w] cer | =
Qese =~ 3 {—-2—2—-— } Ceer (14)
T+dw /wl,eff

The forms of Fhelg_matrices for I < 9/2 and for IM= 1 have been given elsewhere
(ref.8); for single guantum process it is simply,

cos 5 st » sin 5 t
M) = _.._.ef‘ zeff (15)
=-sin Qefft . cos Qefft .

Clearly a pure rotation corresponding to case of Iﬁ= 1/2 ;s physically easier
to visualize than IHf 1, although in actual use at resonance, Aw=0 {(eg.11)
simplifies considersably for In=1'

The treatment outlined kere describes single quantum selective excitations
within the ZIH+1 supset of levels. To be of use, it is necessary to extract the
nultiplet density operator from the full density matrix operator. This is
easily done in NQR problems, expecially when the system is initially at

equilibrium.
PULSED NQR

"As an example, the case'of an axially symmetric quadrupocle for I=3/2 within a
principle axis convention and in the absence of an external field is treated.
The equilibrium density matrix operator is

s ok 2 . 4420
o3 /200) HL33/2+¢°(0;"$ ()} o _ (18

where, #s in paper II1I,

1 0 0 o -1 0 o0 0
. 3/2 . .
_fo 1 o o}l _ . 20 f 0o 1 06 o
E32= o 0.1 o —ir{-:ém' (17 ana 44 =l o 0.1 o} O®
0 0 0 1 ’ 9 G 0 -1

-3/2
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The matrix representations refer to the MM' basis (ref.5). Equation (18) is
easily decomposed into multiplet spins of 1/2 to give,
2 10 2 10
= Li{E - 2) + - 1
03,20 = k{E; , — 0(0)Y 10 (372) + 6L0IY o (-1/2)] (19)
The notatio 1}10 {M) and ¢1 (1/2 M) ref t = 1/2 ltiplet i £ t
n 1,2 o efer to an IH— /2 multiplet spin o WO

states composed of levels M, the uppermost, and m-1, represented in matrix

notation by

1 0 0 O 0 0 0 o0
10 _+jo -1 0 o gy, 310 0o o o
28372 =Lty 9 o o (20) and F17207/2) 0o o 1 o) ¥
: 0O 0 0 o 0 0 0 -1
From equation (6) it follows that
1,1 3, _ .2 1.1-1, _ _..2
¢tz 3 = 1¢0(0) (22) and boly ) = —1¢,(0) (23)

An important aspect of this picture is that the two multiplet spins of 1/2
refer to the 3/2 <--> 1/2 transition and the =3/2 <-=> -1/2 transition. The
degenerate states clearly imply that the multiplet spin 10 ¢1/2 1/2) is not
needed and the -1/2 <--> 1/2 transition is not excited. It is precisely because
only two of the three single guantum processes are excited, that the pulse on
I = 3/2 at zero field is selective. Eg. (10) describes the effects of a pulse
on each multiplet spin 1/2; substituting the results from Eg. 10 into Eg. 19
gives the full density matrix, 03/2 ([aB]¢), after the pulse. The only
modification required in NQR formalism is the absence of the rotating frame in
Eq. (10) derived for NMR from the Zeeman frequency.

Choosing th as the duration of the pulse, at resonance with the pure
quadrupole frequency W, for the +3/2 <--> + 1/2 transition, so that Aw=0 and
W= and invoking Eg. (8) gives

T‘-‘{qg»11(1)03/2(t)}

i 7/3/10 ¢§ sin(/3w1tw) sin ubtw ei¢ (24)

1
¢1(tw)

1 1
Since ¢1(tm) a <¥_>, the two components of ¢1 correspond to <Ix> and <Iy> after
the pulse.. Hence the result is simply

= -/3a75 &2 - i =
o (e ) = v3/5 $5(0) sin (V3w t ) sin wE, = 2/Ys <I.> (25)

for phase angle of ¢ = 0. This agrees with the expression Eq.(13) calculated in
ref.11 with ¢§(0) = ~-1.
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CONCLUSION AND GENERALIZATIONS

Provided the irradiation is only pertufbing a2 single resonance, any half-
interger spin system can be described by multiplet spins of 1/2; these all have
of necessity Qeff= 0, even in the presence of large quadrupolar coupling
constants. Mcreover, the rf amplitude is increased according to (8). It is
only neceésary to. extract the multiplet spins 1/2 frem the total spin density
operator for spin I, as in (ref.6); use (10) and reinsert the result in the
total spin density operator cI(t)~ The case of I=3/2 for NMR is treated in III
(ref.5).

' For integer spins the same treatment holds for all single quantum trangitions
except the 1 <-=>'0C and -1 <-—> 0. These two are both ceincident in frequency
and share common level; therefore the two transig}ons must be treated by a

multiplet spin of Iﬁ=1, as in IIX. In this case 5eff is not zero but is given

by (9) and (14). Purther, the effect of the pulse is not a pure rotation but

rather a coubination 6E'quad:upolar and rf evolution that may approximately

f
described by (11) provided | w, effl >> 'Qeffi
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