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INTRODUCTION 

In pulsed ?XUR the use of pure pulses corresponding to &functions are found 

to bs preferable since they simply prodzce rotations of the various 

polarizations. whilst in principle such ideal infinitely-short pulses should 

cover all frequencies, in practice both the pulse duration and frequency range 

are finite. A theory for selectively pulsed NMR (1.2) has recently been 

developed (7) to cover those cases in which not all spectral frequencies are 

sizaultaneously pulsed. Selective irradiation is particularly pertinent to NQR 

where the large quadrupolar coupling constant ensure that it is rarely possible 

to pulse all frequencies simultaneously. 

In this paper the NMR theory of selective excitations is used to describe 

pulsed NQR experimznts involving single spins of arbitrary magnitude; the 

effects of rf guises will bs completely predicted for any initial condition. In 

particular, it is shovn that pure NQR frequencies corresponding to transitions 

betveen isolated pairs of levels, as in case of I = 3/2 with 3/2 '--' 1/2, or, 

-3/2 <--> -,,2, are'not affected by the quadrupole and that such selective 

pulses correspond to pure pulses. In contrast, for integer spin there will 

always be a cotmon level shared by two spectral frequencies (e.g. as in I = 1 

case with -1 <---> 0 I 0 c---> 1). This gives rise to effects fra both the rf 

field and the quadrupole which are no longer purely rotations. 

In this paper the advantages of a multiplet formulation of selective pulse 

theory are outlined starting with the NHR case. The theory is extended to 

consider applications in NQR. 

SELECTIVE EXCITATION IN NHR 

The multi_wle formulation of NUR (ref.3-7) writes the spin density operator 

(ref.81 in terms of a multipole operator basis vhich is irreducible under the 

rotation group. Physically k describes the multipole 

spherical corn_ponent, q = A m defines the multiquantum 

polarizations are simply the expectation value of the 

operator, viz: 

character and the 

coherences (ref.6). The 

corresponding nulti_wle 

(1) 
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Such kuouledge of the nuclear polarizations completely describes the spin state. 

The spin density opekatoz oI(t) can be written in the nultipole basis as, 

21 +k 

UIW =A( EI+ z 2 
21+1 

+)~kqtI,i 

kolq=-k 

(2) 

where the adjoi+ pro&aI-y,yktZ vkq, has been used. The tima evolution is 

determined by the standard &a, 

j’. 
au,(t) 

at 
= [)rlrul(t)l_ (3) 

vherex is the Hamiltonian for the system. 

In solving (31, it will be seen that exponentiation of anduse of unitary 

operators of 
Instead, one 

dif f exantial 

form U = exp( -Ok), as in (ref.13). has been completely avoided. 

commutator is calculated and a set or' coupled first order 

equation obtained, 

irhereeisa 

of the form 

(4) 

vector spanning indices k and q, and has a matrix representation 

(2) kq,k'q' (5) 

It is clear that the concepts and representations implicit in (4) and (5) are 

derived in part from earlier ideas (ref.91 dealing with Liouville op&ators. It 

is necessary to s_=cify the initiaI conditions k(O) to obtain a soluticm of (41. 

Tbi maltipole theory of selective excitation f ocusses on the multiplet subset 

of levels irradiated by the pulse- In conventional HKR only single quimtum q = 

Art = fl cohereno& are observed: for NQR these frequencies are the strongest 

features. For q = fl pairs of adjacent levels may be used to define a zultiplet 

s#_u of l/2; the formalism has.. been discussed elsewhere (ref.5). When two 

transitiors that share a co-n level are simultaneously excited within a three 

level submanifold, the multiple= spin is not l/2: a multiplet spin of 1 nov 

applies with the level'construction illustrated in Fig. 1. Fuxther generaliza- 

tion of the mlti$let~&xept to multiquantum transitions is straight forward. 

Such an I, multiplot spin will act on a (2Ir$?) subspac+2 and allw one to 

v-rite fonaaI equations (ref.7) analagous to (l>-(5). The multiplet spin density 

operator is then 

(6) 

Vhicbis particularly simple for IH= l/2, or 1. For a Hamiltoni& 
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L-1 
(a) 

Fig.1. Selective excitation of (a) one transition defining an I&, and (b) two 
single quantum transitions defining an k=', multiplet spin. 

{31~-I(Ifl)}-%xw,co~(ti-~) + fiIyw, sin(k.-0) (7) 

where Q is the phase angle and w = yHo, it is found that for the single quantum 

selective excitation, the rf amplitude is replaced (ref.3,10) by 

w, eff= J(I+m)(I-mtl) "1 (8) 
, 

and the quadrupolr term G is replaced by ceff(ref.3). For IH= l/2, Qeff= 0 and 

for In= 1 the effective term is 

Geff = 2Q 1(21-l) 
(9) 

It is significant that for multiplet spins iM = j/2, regardless of the magnitude 

of z,' the effect of an rf pulse is solely determined by the rf Zeeman term- The 

result is a pure rotation (ref.6,7), 

(10) 

The angles a and B are given for both on and off-resonance conditions (ref.6); 

in the present context, w, is replaced by U, eff- It is seen that (8) is the 

origin of the &I,, and 2w, factors found in'selective processes (ref.lO.11); 

these may be interpreted physically as increases in y and the effective rf power 

arising fram localization of the rf to the IH<I, (21n+l) subspace, rather than 

being spread over (21+1) levels as in the non-selective case. In (70) the 

ligner rotation cntrices are defined with use of the convention of Ednds 

(ref.12) and*;: . 
, 

lnplies the rotating frame defined by.% = e 
-iq uot 

0; - 

For a selective pulse acting on a multiplet spin 1,=-l, the combination of 

both rf and quadru_pole interactions mast be considered. This has been solved by 
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perturbation theory (ref.31 in the limits lw, effl’ jGeff i. Since the effective 

rf amplitude is larger than 

is less than 6. clearly the 

w, whilst the effktive quadrupole coupling constant 

1-t !0,~>!5: is particularly easily satisfied by 

selective pulses. The result is, 

Qefl &L?+,: eff 
, (12) 

co9 8= Aw/Q (13) 

and vhere the effective quadnpole occurring in the development matrices H (t) 
= 

is gives by* 

& ff = (14) 

The forms of the H rratricw for I < 9/2 and for IH= 1 have hen given elsewhere 

tref.6); for single quantum process it is simply, 

g(t) = 
. 

(15) 

Clearly a, pure rotation correspontig to case of In= l/2 is physically easier 

to visualize than In= 1, alth0ugi-1 in actuzl use at resonance, b2=0 (eq- 11) 

simplifies corsiderably for 1P_=l. 

The treatment outlined here describes single quantum selective excitations 

within the 21 +1 
H 

subset of levels. To be of use, it is necessary to extract the 

mfitiplet Sensity operator from the full density matrix o_perator. This is 

easily done in NQR problems, expecially vhen the system is initially at 

equilibrium. 

PUISm NQR 

Asan example, the case'of an axially vtric qua&pole for 

principle axis convention and in the absence of an external field 

The equilibrium density matrix operator,is 

o,,,(O) = k[E3,2 + 9;(O>y20(I)} 

where, rs Fn paper III, 

010 0 
.(17) 

0 0 01 

and Y 20 = 
i 

-1 

0 

..o 
0 

I=3/2 within a 

is treated. 

(16) 

0 0 0 

1 0 0 
0. 1 0 (18) 

0 O-l 1 



The matrix representations refer to the Px' basis (ref.5). Equation (18) is 

easily decomposed into multiplet spins of l/2 tc give, 
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a,,,,(O) = t{E 
3/Z - 

(19) 

The notation (M) and 4: (l/2 bl) refer to an &= l/2 multiplet spin of two 

states composed of levels H, the up_pe-st, and m-l, represented in matrix 

notation by 

I1 0 0 o\ /a 0 0 o\ 

%2(3/2) =$ -i H !j (2G' and 
ZI'O (-l/2) -- O 
&l/2 18 ! H _si (2') 

From equation (6) it follows that 

Oi($ $1 = i+;(O) (22) and 
1 1 -1 

4oOy y) = -i+:(O) (23) 

An important aspect of this picture is that the trrO multiplet spins of l/2 

refer to the 3/2 <-- > l/2 transition and the -3/2 <--> -l/2 transition. The 

degenerate states clearly inply that the nultiplet spin 
Y" 

(l/2 l/2) is not 

needed and the -l/2 <---> l/2 transition is not excited. It is precisely because 

only two of the three single quantum processes are excited, that the pulse on 

I = 3/2 at zero field is selective. Eq. (10) describes the effects of a pulse 

on each multiplet spin l/2; substituting the results frcu Eq. 10 into Eq. 19 

gives the full density matrix, c3,2 ([cK~~~), after the pulse. The only 

modification required in NQR formalism iS the zbsence of the rotating fr- in 

Eq. (10) derived for NMR from the Zeeman frequency. 

Chwsing t, as the duration of the pulse, at resonance with the pure 

quadru__wle frequency w. for the +3/2 < ---> + l/2 transition, so that APO and 

(LW~, and invoking Eq. (8) gives 

@:(t,) = pIv11(I)a3,2(t)] 

=i r/3/10 0; sin(J3w,tw) sin w t ei@ 
ow 

Since +i(tu) a <I_>, the two corn_pcnents of 0: correspond 

the pulse.. Hence the result is simply 

(24) 

to <Ix> and <Iy> after 

9,(t,) = -JZ ok sin (r'3wltw) sin w t = 2/r/5 <Ix> (25) 
OW 

for phase angle of Q = O- This agrees with the expression Eq.(13) calculated in 

ref.11 with Q:(O) = -1. 
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CON(ILUSION .&D GEX&.ALIBATIONS 

Provided the irradiation ls only pertuibing a single resonance, any half- 

inter- spin system can be described by &tiplet spins of ?/at these all have 
z 

of necessity Q,,= 0, even in the presence of large qua-polar coupling 

constants. Ucxover. the kf amplitude is increased according to (8). It is 

only necessary .to extract the multiplet spins l/2 fraa the total spin density 

operdtor for spin I, as in (ref,6); use Cl01 and reinsert the result In the 

total spin density operator aI( The case of X=3/2 for NKR is treated in III 

(ref.51. 

For integer spins the sane treatxzent holds for all single quantum trzzsitions 

except the 1 C---> 0 and -1 <--> 0. These tw are both coincident in frequency 

and share common level; therefore the two transitions must be treated by a 

multiplet spin of &=l, as in III. Iu this case geff is not zero but Fs given 

by (9) and (14). E'urther, ths effect of the pulse ti not a pure rotation but 

rather a combination of qud.rupolar and rf evolution that may approxfcately 

described by (11) provided! w, eff! >> Izeffl. , 

Financial sup~rt for this vork uas pravided by Natural Sciences and Engineering 

Council of Cauada (NSIRC). 

G- Bodenhausen, Prog- NWR S_pectroscopy, :4 (1981). 137. 
A. Xokaun and R-R: Ernst, J. Chen. Phys., 67(1977), 1752. 
B.C. Sanctuzry, (Paper V), Wol. Phys., in press (19831. 
Ides., (Paper I), J. Churn., Phys., 73 (19761, 1048. 
Id-., (Paper III), Bol. Phys., 48 (19831, 1155. 
B.C. Sanctuary, T-K. Halstead and P. Osment, ibid., .in press (1983). 
B.C. Sanctuary and T-K- Balstead, (paper IX), J- Bag. Resonance, 53(19831. 
187. 

8 u. Faso, Rev. nod. Ehys., 29 (1957), 74. 
9 C-N- Banweil and H. RiPas, Mol. Phys-, 6 (19631, 225. 
10 S. vega, J. Che!a. Phys., 68 (19771, 5586. 

11 H. Blocn, B. Hekzw.and E-L. Hahn, Phys. Rev., 97 (1955) 1699. 
12 A-R- Edeon&, 1960, Angular #omentm in Quantum Mechanics, (Princeton Univ.). 
13 T-P. Das and A-R- S&a, Phys- Rev-, 98 (1955). 316. 


