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The relaxation of an 1=3/2 spin system in an anisotr?pic environment characterized by a finite 
residual quadrupolar splitting oQ is modeled by analytically. solving for the density operator from 
Redfield’s relaxation theory. The resulting equations are cast into the multipole basis in order to 
describe the tensorial components of the spin density matrix. Included in the relaxation matrix are 
off-diagonal elements J1 and J, V which account for anisotropic systems with wq values less than the ~ii 
width of the resonant line. With the Wigner rotation matrices simulating hard pulses, the response, 
to an arbitrary pulse sequence can be determined. An analytical expression for the response to the 
double quantum filtered (DQF) pulse sequence (r/2) - (77’2) - r- (7/2) - 8- S- @- -44 for I?= rr/2 is 
presented, showing explicitly the formation of a second rank tensor owing only to the presence of 
a finite oq . This second rank tensor displays asymptotic behavior when the (reduced) quadrupole 
splitting is equal to either of the off-diagonal spectral densities J2 and J1. Line shape simulations2 
for wq values of less than a linewidth reproduce the general features of some recently reported 
“3Na DQF line shapes from biological systems. Distinct relaxation dynamics govern each of the 
tensorial components of the resonant signal revealing the influence of the experimental variables on 

. . : 

the line shape. 

I. INTRODUCTION 

The Redfield theory is often sufficient to describe the 
spin relaxation of quadrupolar nuclei. In the isotropic phase, 
where the residual quadrupolar interaction is averaged to 
zero (w4= O), Redfield theory applies to all but those sys- 
tems characterized by very long rotational correlation times 
T, .1*2 Provided T= is not in the extreme narrowing limit, it is 
possible to induce the formation of multiple quantum (MQ) 
coherences in a nuclear magnetic resonance (NMR) experi- 
ment owing to the presence of multiexponential relaxation.’ 
Multiple quantum filtered (MQF) experiments may thus be 
used to directly distinguish pools in which the nuclei are 
bound or otherwise associated with slowly rotating macro- 
molecules, since single exponentials describe the relaxation 
of the free spin concentration. In many cases, the static qua- 
drupolar interaction term of the Hamiltonian contains a con- 
tribution from a nonzero quadrupole resulting from an aniso- 
tropic distribution of the electric field gradients (EFG) in the 
sample. In a macroscopically oriented sample with local an- 
isotropy, a static quadrupole splitting results if the diffusion 
of the spin-bearing particle is slow, i.e., the residence time 
within each “domain” is much longer than the inverse of the 
quadrupole splitting. In this context, domain may be a mi- 
crocrystallite as in some liquid crystal samples,3 or may be a 
nomer for the long orientational correlation length of some 
biomolecular associations. The splitting within one domain is 
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then determined by the orientation wit6 respect to the exter- 
nal magnetic field and the spectrum is the average over many 
domains. 

Observations from some MQF experiments of biological 
tissue are best interpreted in the context of this latter 
example.4-7 Rooney and Springer have produced an exhaus- 
tive review of tissue resonances of I=312 nucl&8’9 where 
the influence of a residual quadrupole is discussed from an 
experimental perspective. Subsequent efforts describe spe- 
cific studies of 23Naf in biological systems.” More general 
considerations include chemical exchange between the 
bound sites and the isotropic surroundings; some theoretical 
studies examine the modulation of both wq and rC by chemi- 
cal exchange by means of a discrete exchange model 
(DEM). ‘l-l4 This allows a discussion of the intermediate and 
slow exchange regimes, since in the fast exchange lirnih 
macroscopic parameters are found to be weighted averages 
of the exchanging sites12’14 and may therefore be discussed in 
the context of Redfield’s theory. Eliav and Navon have de- 
fined the limits of Redfield’s theory” in terms of the MQF 
experiment by extending their general treatment of the quan- 
tum Liouville equation to describe the line shapes of the 
higher quantum coherences of a single spin pool over a range 
of 7C values for an isotropically oriented system. 

The state multipole formalism’6-18 describes the evolu- 
tion of a spin system in a multipulse NMR experiment. Re- 
laxation under the Redfield operator of an isotropic system 
has been described in the multipole basis” and the evolution 
of the tensors corresponding to higher quantum coherences 
for 1~912, in the absence of relaxation, has been explored.18 
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More recently, Furo and Halle have investigated the spin 
relaxation of nuclei in anisotropic systems in two- 
dimensional quadrupolar echo% and inversion recovery21 ex- 
periments using the multipole formalism. They have also de- 
veloped a theoretical framework for the use of MQ filters 
(MQF) for the detection of the evolution of various MQ 
coherences,“’ again in the multipole basis. While the Red- 
field superoperator was used to describe spin relaxation, Furo 
et al. assumed a negligible contribution from the off- 
diagonal elements of the resulting relaxation matrices. The 
elements of the spin density matrix then diagonalize and re- 
lax independently and are solved separately. However, for 
cases in which wB is less than the linewidth of the central 
line, this approximation will not adequately describe the spin 
dynamics. For example, we have found that the second rank 
tensor generated in a MQF experiment, the presence of 
which is the direct result of an anisotropic environment, dis- 
plays strikingly rich behavior at small oq values that can 
only be accounted for if the contributions from these off- 
diagonal matrix elements of the Redfield equation are con- 
sidered. 

Here, we present solutions for the time evolution and 
relaxation of the eigenvectors of the spin density matrix for 
I= 3/2. Cast into the multipole basis, the resulting rate equa- 
tions may be used conveniently to generate an analytical 
response function to a general hard pulse sequence. The re- 
sponse to a typical MQF experiment is discussed in the con- 
text of the tensorial contributions to the line shape. 

II. THEORY 
For the system under consideration, in the product op- 

erator basis, the Liouville superoperator is diagonal. Assum- 

r -i(wo+w,)-(JoCJ~+J2) 0 

-(iL+R)=CI 0 --icoo-(J1+J2) 0 I* (3) 
JZ -i(wo-~q)-(JO+J,+J2)] 

In the treatment of the isotropic case L=w,E, where E is the 
unit matrix, iL and R may then be treated and solved sepa- 
rately as shown elsewhere.’ To reiterate, the off-diagonal re- 
laxation terms are relevant whenever the detected quadrupo- 
lar splitting is comparable to, or less than, the width of the 
central line. In systems where all spins are homogeneously 
oriented relative to some external reference axis, as in crys- 
tals and oriented liquid crystals, there exists a single valued 
oq . In samples exhibiting local anisotropy, the splitting ob- 
served in the laboratory frame is an average over all possible 
alignments of the local director of the EFG. However, if the 
splitting shown by the “powder” peaks is large, the relative 
weight of regions exhibiting a small oq is minor. In the 
development of Eliav et al., 6 it is assumed that the value of 
wq relative to the laboratory reference frame is given in 
terms of the molecular reference frame by the following: ._ 

wg=wp3 cos2 OLD-1)/2, 

ing the relaxation may be sufficiently described by Redfield’s 
theory, the spin density operator p is governed by 

dP 
iz=Lp-iRp. (1) 

The Redfield relaxation superoperator matrix R factors into 
distinct blocks for each of the four possible n-quantum mani- 
folds of the 1=3/2 spin and has been given elsewhere.‘123 
The spin density operator is expanded in terms of the product 
basis operators 

fw=C Pr&,lM (3-I 

with the time dependence being contained exclusively in the 
coefficients prS, The four eigenstates can be relabeled 11) 
=[3/2), 12)7]1/2), 13)=1-l/2), and [4)=1-3/2) giving a 
coupled set of differential equations for the evolution of the 
n-quantum elements. The single quantum spectrum is char- 
acterized by a central line corresponding to the transition 
between the m= t l/2 states flanked by two satellites from 
the /1)4-+12) and 13)*/4) transitions. Unlike the Liouville su- 
peroperator, the relaxation matrix has off-diagonal terms in- 
volving the nonsecular spectral densities J1 and J2 which 
cou@le the operators governing the relaxation of the satellite 
lines.22 If the residual quadrupole splitting is large relative to 
the width of the central line, then the elements of the equa- 
tion of motion (1) decouple and may be treated 
independently.20 For the quadrupolar spin in an isotropic en- 
vironment, the spectral degeneracy of the 21+ 1 -n, 
n-quantum coherences is lifted for any wq Z 0. Incorporating 
the effects of this residual quadrupoIar splitting gives for the 
evolution of the single quantum coefficients 

J2 1 

I 

where &o specifies the angle between the local director and 
the lab frame specified by the magnetic field. The heteroge- 
neous orientations are assumed to follow a Gaussian distri- 
bution about WY’ with a width Aw,mOt. Furthermore, in the 
treatment of Ref. 6, chemical exchange of a single spin be- 
tween anisotropic sites with different tJto and WY’ values is 
assumed to be slow. __ 

The isotropic spectral densities that determine the evolu- 
tion of the diagonal terms in Eq. (3) are not strictly real 
valued and contain a second order dynamic frequency shift 
term. However, since the evolution of the central line is de- 
coupled from the evolution of the satellites, the dynamic 
shift effects can be accounted for by adding a relative ‘fre- 
quency shift to the ‘central line only and will be neglected in 
this treatment. The real part of the spectral density is defined 
as 
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(4) 

In the product operator basis, off-diagonal relaxation terms 
are strictly real valued.s4 The quadrupolar interaction con- 
stant is given by 

(5) 

in which Q is the nuclear quadrupole moment and e”q and 7 
are the maximum component and asymmetry parameter of 
the EFG. For convenience, the resonant frequencies have 
been reduced by C, i.e., uuitary and- 

, 
wq 4 

iBq=-, c 
oo=-. 

c (6) 

Solutions to Eq. (1) are found by diagonalizing Eq. (3) 
and solving the resulting set of uncoupled differential equa- 
tions 

Because Eq. (3) is not Hermitian, the transformation is not 

1 
*=ij 

Then, for the relaxation eigenvalues and corresponding product basis eigenfunctions, we find the following evolution: 

R(,‘)= -c[Jo+J1+Jz+(J&$1~2], py=& {-[!J~_0~)“2+iWqlP12+J2P34}~ 

Rp= -C(J, +J2) I pp=p23 , 

R$l)=-CIJe+Jt +J2-(J;-Oz)1’2], P$l)“& {J2P12+[(J~-Cd~)“2+iWq]P34}. 
2 

As solutions to Eq. (l), each eigenvector decays exponentially 

P(l)(t)=P(l)(O)exp(P(l)t) II n . 
Suitable manipulation of Eq. (9) gives the time dependence of the coefficients of the single element operators 

,z%, :.f 
PlZ(0) 
P23(O) , 

P34(0) 

] 

where 

1 

(J; - w;) %osh[ C( J; - w”,) 1’2t] 0 J2 sinh[ C(J$-- w:) 1’2t] 
-io, sinh[C(J~-W~)1’2t] 

Ru)=K(‘)(t) 0 (Jz- cd;)“2 exp(CJot) 0 
J2 sinh[ C(Ji- a$1’2t] 0 (Ji- 0;) 1’2 cosh[ C(J;- 0;) 1’2t] 

+iw, sinh[C(J$- r~$l’~t] 

and 

K(l)(t) = 
exp[-C(Jo+J1fJ2)t]exp(-iw;t) exp[-C(J+iwo)t] 

(J”,-- co;, 1’2 
5 

(JZ- crJy2 . 

(9) 

(10) 

(11) 

w 

(13) 

I 

Even with the added influence of anisotropy and relaxation 
coupling via J,, the satellite and central lines remain un- 
coupled and relax independently. This result is consistent 
with previous developments.25 

Additional physical insight may be gained by transform- 
ing the spin dynamics to a spherical tensor basis. In this 

basis, the spin density of the nucleus is described in contrast 
to the eigenvectors of the product operator basis that are 
derived from the lab frame energy levels. In other words, the 
spin coherences are naturally accounted for. The product op- 
erator is related’* to the spherical tensor operators by a 3 -j 
coefficient26 
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TABLE I. R& evolution matrix elements. 

r$ 

rF::3 cos[C(oi-J$‘%]+ 
1 

(w2&lfi ~$c(w~-J~)‘~t] 4-2 exp(CJ& 
P 1 

r”.~lp % 
12 . (o;-J2,‘“I ~xcc+J;m=-~ 

r:1:6’R exp(CJOt)-cos[c(o~-J$l’%]- 
1 

J2 (o;-J;)lfi sXC(+JY2tl =G’ 
1 

I$;:5 cos[c(w~-Jyt]- 
i 

J2 
(~~_J~)l/as~rc(~~-J~)‘“tl 

1 
r’l.~l()lR % 23. (~~-J:),fisinCC(~~-J~)‘~t]=-r~* 

r$:2 
I 

J2 cos[C(oi-Ji)‘%]+ (oz- J;),~ sin[C(oi-J$)%] +3 e%p(CJ,t) 
I 

,IM)(IM’,=(-l)‘-M(21+1)-“2~ i (-i)k 
k-0 q=-k 

,$&r(I) are the operators that span the Liouville space for 
spin I. In the classical limit when the vector operator I is 
replaced by a classical vector r, then the Y@k)q[r)‘s are re- 
lated to the spherical harmonics by3 

,~~k)q(r)=(i)k(4a)1’2rkYkq(e,~). (1% 

In the operator basis of @k)q(I), the tensor rank k and MQ 
coherence 4 are the LiouviIle space quantum numbers 
equivalent to the ZM quantum numbers in state space. Thus 
in Dirac notation, the spherical tensor operator may be writ- 
ten ikq)) with the double ket notation indicating an operator 
in Liouville space in contrast to the state space notation 
[1&?). Since the expectation value of these operators is physi- 
cally significant, the multipole polarizations are defined 

~~(t>=Tr[~~k)q(I)tp(t)l=(~k)q(I)t), (16) 

where t is the normal operator adjoint. By direct analogy 
with the IZM) basis, Ikq)) can be mixed by coupling inter- 
actions. The spin density operator for a single spin can be 
written as 

I 

07) 

where the 4:‘s are the coefficients that determine the state. 
Since the product and multipole operator bases span the 
same space, they are related by a unitary transformation de- 
fined by Eq. (14). Applying the appropriate transformation’7 
to Eq. (12) gives the evolution matrix in the multipole basis 

3 112 2 3 112 

i5 112 0 -i51J2 

-2i/2 6i/2 -2112 

3 112 -i5’12 -2’12 
xR(‘) (’ _ 2 l/2 i - 1 2 

4 
i 0 6m. 

5 3 l/2 i5 II2 -2ll7. i 

=R& exp( - CJt)exp( -iw,$) 
5 

X (181 

The matrix elements for Eq. (18) are given in Table I. Evo- 
lution of the 4 = 1 multipole coefficients is then given by Eq. 
(19). - 

&(t> 1 I (Pm 

&l(t) =R& &(O) 
&it) 4:*io> J 

(19) 

From the multipole expansion in Eqs. (18) and (19) and 
the explicit form of the relaxation matrix elements in Table I, 
it is readily apparent that in anisotropic media, it is possible 
for a second rank tensor polarization, i.e., &l, to couple to 
the transverse magnetization 4: t produced in a NMR experi- 
ment. Moreover, as og approaches zero, the contribution 
from this vanishes as seen from r;2 in Table I. 

The double quantum coherences can be treated in a man- 
ner analogous to the SQ coherences above. With the Redfield 
matrix applicable to the DQ transitions,’ the DQ eigenvec- 
tors evolve according to 

-(iL+R)=C 
-i(2wo+o,)-(Jo+J,+J,) Jl 

Jl I -i(2oo--o,)-(Jo+JI+Jz) ’ (20) 

As in the single quantum case, the Liouville and Redfield supermatrices cannot be separated. Again, diagonalization of Eq. 
(20) and subsequent solution of Eq. (1) gives the exponential time dependence of the DQ product basis eigenvectors, from 
which can be calculated the time dependence of the prs coefficients 
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P13Cf) I 1 P24Cf) 
=Ie(t) 

for which 

i 

(.+ ,y cosh[C(J:-ot)“2t] J1 sinh[C(JT-oi)*“t] 
- iw, sinh[ C(.$- CO$~“~] . P13(0) 

(J:-coyz cosh[ C( J; - w;) Pa4(0) 

J, sinh[C(.+ wyt, fiw, sinh[C(J+$“2t] 

K@‘(t) = exp[ - C(J+ i200)t] 
(.I?- coy * 

Applying Eq. (14) gives the DQ coherences in the multipole 
expansionI 

4220) I 1 &Ct) =exp[-C(l+i2w0)t]( $ $)[ z;ii]. 

(23) 
The matrix elements for the double quantum evolution ma- 
trix in the multipole basis R& are given in Table II. Again, 
in isotropic media, where oq = 0, there is no coupling be- 
tween the even and odd rank tensors. 

Jaccard et ~2.’ have treated the longitudinal relaxation 
processes of the zero quantum polarizations 46, so they are 
not discussed here, except to say that in the zero quantum 
manifold, the (p”, alignments are associated with the Tk o 
spherical tensors and the off-diagonal elements of R(O) &- 
duce to zero in the extreme narrowing limit. The only triple 
quantum transition is governed by a constant of motion fully 
given by 

p~4(t)=~~3(t)=~~3(0)exp[-C(JI+J2+i3~O)t]. (24) 

Ill. RESULTS AND DISCUSSION 

For I=312 nuclei, MQF spectra are typically recorded 
using the pulse sequence’,27*28 

(r/2)-(~/2)--v-(7/2)-8-S-@-AQ (25) 

with appropriate phase cycling.29 For 13=n-12, both the con- 
tributions from the quadrupolar (second rank) and octapolar 

W) 

(third rank) tensors are maintained. In the context of systems 
with a finite oq, the effect of this pulse sequence may be 
summarized as follows: The first rr/2 pulse converts the equi- 
librium magnetization & to the transverse plane, where it is 
described by $iI. During the MQ preparation time T, the 
relaxation processes governed by the modulation of the qua- 
drupolar interaction produce & and &.I as per Eq. (18). 
The v pulse in the middle of the preparation period serves to 
refocus the field inhomogeneities and has no effect on the 
relaxation. The second rrl2 pulse transfers & and & into 
the DQ manifold to produce +& and +&. These evolve 
according to Eq. (23) during the MQ evolution time S, and 
are subsequently converted back to the SQ manifold by the 
read pulse to contribute to the observable +:I, which is 
monitored during the acquisition period AQ. 

In isotropic media, coupling can exist only between ten- 
sors differing in rank by an even integer value, a fact borne 
out by Eqs. (18) and (23). Thus, only odd rank tensors are 
produced in a NMR experiment on an isotropic system from 
thermal equilibriam. Conversely, anisotropic ordering per- 
mits coupling to +“+I for 1=3/2 nuclei in the preparation 
period. The DQF phase cycling selects both & and $i2, 
while only the contribution from 4g3 is retained in the triple 
quantum filtered experiment. 

In the DQF experiment, it is necessary to follow only 
those tensors that contribute to and evolve from the 4 = 2 
coherences. By using the conventional notation for the re- 
duced Wigner rotation matrix elements d$ ( 0) (Ref. 26) and 
the evolution matrix elements t-z),(t) identified from IZqs. 
(18) and (23) 

&t)= f: d~r(e)#$(o), #t’=T r~k)~~‘Ko 
q’=-k 

06) 

and extracting the relevant terms, one finds for the detectable 
vector magnetization 

&om= 
exp[-ioh(AQf7+2S)]exp[-CJ(AQ+T+6)] 

25 (r:3(AQ){r~Z(G)r~l(T)Cd3_12(d~l-d~-l) 

(27) 
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TABLE II. R& evolution matrix elements. 

r;p 

% 2 2 Ii?. I$+~~~+:,~ sin[C(o,-J,) +2 t]=-r% 

cordingly gives a line out of phase [Fig. 1 (b)] with respect to 
that produced by the third rank tensor. In addition, as oq 
approaches J, , the amplitude of the contribution from +51 
follows: 

Assuming hard, delta function pulses, evolution and relax- 
ation are ignored during the pulse int~rv>l. All relaxation 
matrix elements are positive. The relevant signs for the ele- 
ments coupling the even and odd rank tensors have been 
extracted and appear in the pulse terms. 

The FID given by Eq. (27) is exact and incorporates the 
effects of evolution of the DQ, y=2, multipoles in the short 
S period. Simulation of the DQF experiment setting oq= 0 
gives results identical to those obtained by Jaccard et al.’ 
after Fourier transforming a suitably partitioned FID, as ex- 
pected for an isotropic system [Fig. l(a)]. Since we are in- 
terested in the analytical behavior of the frequency domain 
line shape function, we will restrict the discussion to the case 
of oriented systems. In the anisotropic case, all nuclei expe- 
rience the same value of wp in a uniformly oriented sample. 
Consequently, there is no broadening due to {numerical) av- 
eraging over the heterogeneous sites. Increased values of the 
quadrupole splitting generate a contribution from the second 
rank alignment tensor. For splittings less than the resonant 
linewidth, the more complex shape of the signal is due to the 
overlap of the quadrupolar and octapolar contributions [Figs. 
I(c) and l(d)]. As wg is increased beyond the magnitude of 
the resonant linewidth, the satellite lines become resolved 
[Fig. 1 (e)]. 

Figure 2 shows the relative amplitudes of the real parts 
of the second and third rank tensors at the end of the read 
pulse (i.e., ~~1[(71/2)-~(~/2)-S-(~/2)l) with varying 
wq. As expected, the third rank tensor oscillates through a 
range of positive values maintaining the DQF signal through 
all conditions. In contrast, &1 is zero for oq==O and subse- 
quently oscillates through positive and negative values as wq 
increases. Moreover, +?I goes through two cusps at small 
aq values. The first is at oq= J2, where the second rank 
tensor completely dominates the spectrum as shown in Fig. 
l(b) and 2(b). The contribution of &?I to the FID may be 
further elucidated by the form of the analytical expressions 
of the relaxation elements in Eq. (18) governing the devel- 
opment of +-I and the value of the expression 
I.~2(s)y:1(7)D1+r~3(53r.Lf1(7)D2 (D’s represent pulse 
terms) from E?q. (27). As oq approaches Jz, the sine term in 
ra, rapidly approaches a finite value 

lim ril(T)= lim (15j”‘C7J2 
sin[ C( co;- Jy3-j 

oq-+ mq-42 C(W;-J;)~‘~T I 

=(15)“2C7J2. (27) 
The contribution from the sine term in r: 1 (7) is also main- 
tained, although it is much less significant for small values of 
6, Simulation of the line shape with this splitting value ac- 

X exp(CJo~)-~~s[C(~~-J~)1’2~] 
i 

JZ 
- (w;-Jy2 

sin[C(w%--Jz)*“7] 02, 
I 

(28) 

in which &1 is rapidly minimized for finite values of 6. It 
should be noted that while the intensities of each of these 
tensorial components is modulated by 7 and S, the positions 
of these cusps are determined by the nonsecular spectral den- 
sities J1’ and Jp. While such asymptotic terms exist in the 
evolution of &. 1, they are mitigated by the preponderance of 
other exponential terms that dominate the evolution of the 
odd rank tensor components. 

By setting 8=54.73” in the DQF pulse sequenceT3’ it is 
possible to isolate the contribution of the second rank tensor. 
That is, the explicit form of the Wigner rotation matrix se- 
lectively filters out any third r&k tensor components.‘V5 
Simulation of this modified pulse sequence produces results 
nearly identical to those shown in Fig. 1 (b) showing that this 
line is indeed dominated by the presence of a second rank 
tensor. Notice is made here of the line shape of the isolated 
contribution from the second rank tensor, which may be 
thought of a powder distribution of antiphase doublets. It is 
antiphase in the sense that this signal is 90” out of phase with 
respect to the third rank tensor contribution to the observ- 
able. Consequently, the +?I contribution to the signal ap- 
pears to be in a dispersive mode when plotted so that the 
contribution from &I is in an absorptive mode, as is the 
custom. When properly shown in an absorptive mode, the 
poorly resolved antiphase doublet appears with an apparent 
dispersive line shape, from which the experimentally ob- 
served wi can be measured. For clarity, in Fig. l(b) the iso- 
lated &1 portion of the signal is presented as it would ap- 
pear in a dispersive mode so that its contribution to the 
reported experimental results is more obvious. 

Using this multipole approach, it is not difficult to show 
the dependence of the line shape on the preparation time as 
recently observed in biological tissues.4*5*7 In Fig. 3, the rela- 
tive amplitudes of the real parts of & 1 and &Z 1 at the end of 
the read pulse are plotted as a function of 7, showing that 
under the conditions used to generate the line reported in Fig. 
I(c), &.I has a significant contribution only up to about 20 
ms, after which it quickly decays &I maintains a significant 
contribution to approximately 40 ms. This underscores the 
fact that each of the tensorial components of the observed 
signal, including the higher quantum coherences, are gov- 
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b 

-5;o 

I I I 8 I I I I 6 I I 
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d 

I I I , I t I I I I I 1 
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e 

FlG. 1. Fourier transforms of Eq. (26) with 7=4 ms, 8=6O ps, T~,o,= 1, 
C=9.77X108 s2, and wk values (radk) (a) IV; = 0 radk, pure octapole 
contribution; (b) 0; = 40 radk (=CJ2); (c) 0; = 45 radls; (d) 0: = 50 
rad/s; (e) 6~: = 10 000 rad/s. The isolated contribution from &, (0 
-54.73”) is identical to (b). For w,=J1, @I is negligible and the line is as 
shown in (a). 
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freq. (Hz) 

erned by distinct relaxation behavior. The fact that the lines 
in a resonant signal may be the result of. several tensorial 
contributions may complicate the interpretation of relaxation 
data inferred from analysis using a product operator basis. 
Use of spherical tensors gives an alternative way of treating 
these contributions to the more commonly used concepts of 
the customary “slow” relaxation of the central line and 
“fast” relaxation of the satellites. 

IV. CONCLUSION 

The formation of even-rank tensors in a MQF experi- 
ment on a half-integer spin system initially at thermal equi- 
librium is a direct result of the existence of a finite residual 
quadrupole splitting. When wq is less than the resonant line- 
width of the \-l/2)+(1/2) transition, it is necessary to ac- 
count for the off-diagonal terms in the Redfield perturbation 
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psi3 
psi2 

0.00 0.01 0.02 0.03 0.04 a 

I-./ ----- Psi3 
-0.2 lp-ii. --~ psi2 

0 50 100 150 200 

FIG. 2. The dependence on the quadrupolar splitting of the relative ampli- 
tudes of 45, (solid line) and &r (dashed line) at the end of the read pulse 
in the DQF experiment (a) large splittings showing the oscillation in both 
tensors (b) small splittings showing the dominance of &, near ~JJ: = 40 
ml/s (-CT,). Parameters are the same as in fig. 1. 

treatment of the relaxation. Even though relaxation does not 
couple the central line to the innermost satellites for half- 
integer spins, inclusion of these nonsecular terms is required 
to generate the asymptotic behavior of the even rank tensor 
and, thus, the full contribution to the line shape in a MQF 
experiment. 

The use of Redfield’s theory to describe the evolution of 
the tensorial components of the spin density matrix has been 
shown to provide a convenient method for the analysis of the 
dynamics of a spin system in a MQF pulse sequence; with 
the multipole evolution matrices presented here, it is easy to 
recognize the response to a general hard pulse sequence and 
the origins of each of the tensor components. Since there is a 
relatively small number of characteristics of the quadrupolar 
nucleus that avail themselves to interpretation by relaxation 
studies, the problem is to try to directly relate this nuclear 
dynamic behavior to well-established attributes of the aniso- 
tropic system in question. The analytical solutions offered 
here not only describe the relaxation behavior of each of the 

.I. 

.; 

.t 

. j 

.;. 

i  

I.0 

tall (s) 

----- Psi3 
I --- psi2 
5 0.06 

FIG. 3. The dependence of the relative amplitudes of &t (solid line) and 
&t (dashed line) at the end of the read pulse in the DQF experiment on the 
preparation time. At short times, the contribution of &r can be observed, 
but quickly dies beyond about 15 ms. w$ = 45 rad/.s. Other parameters are 
the same as in Fig. 1. 

tensor components, but have reproduced some of the general 
features observed in experiment and in more fundamental 
analyses. 
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